• Received : 2018.12.03
  • Accepted : 2019.10.10
  • Published : 2020.01.31


Linear complementary dual (LCD) codes are linear codes that intersect with their dual trivially. LCD cyclic codes have been known as reversible cyclic codes that had applications in data storage. Due to a newly discovered application in cryptography, interest in LCD codes has increased again. Although LCD codes over finite fields have been extensively studied so far, little work has been done on LCD codes over chain rings. In this paper, we are interested in structure of LCD codes over chain rings. We show that LCD codes over chain rings are free codes. We provide some necessary and sufficient conditions for an LCD code C over finite chain rings in terms of projections of linear codes. We also showed the existence of asymptotically good LCD codes over finite chain rings.


  1. A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr. 6 (1995), no. 1, 21-35.
  2. C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun. 10 (2016), no. 1, 131-150.
  3. C. Carlet, S. Mesnager, C. M. Tang, Y. F. Qi, and R. Pellikaan, Linear codes over $F_q$ are equivalent to LCD codes for q > 3, IEEE Trans. Inform. Theory 64 (2018), no. 4, part 2, 3010-3017.
  4. S. T. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok, and P. Sole, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory 4 (2017), no. 2-3, 116-128.
  5. M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), no. 3, 375-386.
  6. Y. Fan, S. Ling, and H. Liu, Matrix product codes over finite commutative Frobenius rings, Des. Codes Cryptogr. 71 (2014), no. 2, 201-227.
  7. C. Guneri, B. Ozkaya, and P. Sole, Quasi-cyclic complementary dual codes, Finite Fields Appl. 42 (2016), 67-80.
  8. M. Hazewinkel, Handbook of Algebra. Vol. 5, Handbook of Algebra, 5, Elsevier/North-Holland, Amsterdam, 2008.
  9. T. Honold and I. Landjev, Linear codes over finite chain rings, Electron. J. Combin. 7 (2000), Research Paper 11, 22 pp.
  10. L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inform. Theory 63 (2017), no. 5, 2843-2847.
  11. C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr. 86 (2018), no. 10, 2261-2278.
  12. X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl. 34 (2015), 1-19.
  13. J. L. Massey, Reversible codes, Information and Control 7 (1964), 369-380.
  14. J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342.
  15. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
  16. S. Mesnager, C. Tang, and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory 64 (2018), no. 4, part 1, 2390-2397.
  17. G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067.
  18. G. H. Norton, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506.
  19. N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), no. 1-3, 345-347.
  20. L. Sok, M. Shi, and P. Sole, Constructions of optimal LCD codes over large finite fields, Finite Fields Appl. 50 (2018), 138-153.
  21. J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575.
  22. X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393.
  23. H. Zhu and M. Shi, On linear complementary dual four circulant codes, Bull. Aust. Math. Soc. 98 (2018), no. 1, 159-166.