DOI QR코드

DOI QR Code

Seasonal Change in the CO2 Fixation Rate and Water-Use Efficiency of Broad-leaved Tree Species on Jeju Island

제주지역 주요 활엽수의 대기 중 CO2 흡수율과 수분이용효율의 계절적 변화

  • Oh, Soonja (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Kim, Hyoun-Chol (Halla Eco-forest, Jeju Special Self-Governing Province) ;
  • Kang, Hee-Suk (Halla Arboretum, World Heritage Office, Jeju Special Self-Governing Province) ;
  • Shin, Chang-Hoon (Halla Arboretum, World Heritage Office, Jeju Special Self-Governing Province) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김현철 (제주특별자치도 한라생태숲) ;
  • 강희석 (제주특별자치도 세계유산본부 한라수목원) ;
  • 신창훈 (제주특별자치도 세계유산본부 한라수목원) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2019.11.25
  • Accepted : 2020.01.16
  • Published : 2020.02.29

Abstract

Seasonal changes in the CO2 fixation rate and water-use efficiency in the leaves of six evergreen and two deciduous broad-leaved tree species on Jeju Island, Korea, were measured using a portable photosynthesis analyzer, to identify which species are most efficient in taking up CO2 from the air. The CO2 fixation rate was high in the deciduous species in spring and summer and decreased in fall, whereas it was high in the evergreen species in summer and fall and decreased in winter. The rate remained high in the deciduous tree Prunus yedoensis from spring to fall (> 7.1 μmol CO2/m2/s) and in two evergreen trees, Castanopsis cuspidata var. sieboldii and Cinnamomum camphora, in summer and fall (7.0 9.9 μmol CO2/㎡/s). Therefore, these tree species fix atmospheric CO2 effectively. The water-use efficiency was higher in evergreen species than in deciduous species regardless of the season. Exceptionally, it was high in the deciduous species Zelkova serrata in spring and summer (> 100 μmol CO2/mol H2O), suggesting that Z. serrata is a useful tree for dry conditions due to its tolerance of water stress. The regressions of the CO2 fixation rate versus the evaporation rate and stomatal conductance were linear and non-linear, respectively. This suggests that the stomatal activity of leaves plays an important part in CO2 fixation of plants. In conclusion, C. cuspidata var. sieboldii, C. camphora, and P. yedoensis should be planted along roads or in urban spaces for the greening of cities and mitigation of CO2 concentrations in the air.

Acknowledgement

Supported by : 제주대학교

References

  1. Aranda, I., Pardos, M., Puertolas, J., Jimenez, M. D., Pardos, J. A., 2007, Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol., 27, 671-677. https://doi.org/10.1093/treephys/27.5.671
  2. Biswas, S., Bala, S., Mazumdar, A., 2014, Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India. Atmosp. Environ., 89, 827-834. https://doi.org/10.1016/j.atmosenv.2014.03.015
  3. Chen, C. I., Wang, Y. N., Lih, H. W., Yu, J. C., 2016, Three-year study on diurnal and seasonal $CO_2$ sequestration of a young Fraxinus griffithii plantation in southern Taiwan. Forests, 7(10), 230. https://doi.org/10.3390/f7100230
  4. Ciborowski, P., 1989, Sources, sinks, trends, and opportunities, in: Abrahamson, D. E. (ed.), The Challenge of Global Warming, Island Press, Washington, D.C., 213-230.
  5. de Santana, T. A., Oliveira, P. S., Silva, L. D., Laviola, B. G., de Almeida, A. A. F., Gomes, F. P., 2015, Water use efficiency and consumption in different Brazilian genotypes of Jatropha curcas L. subjected to soil water deficit. Biomass Bioenergy, 75, 119-125. https://doi.org/10.1016/j.biombioe.2015.02.008
  6. Hamerlynck, E., Knapp, A., 1996, Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range, Tree Physiol., 16, 557-565. https://doi.org/10.1093/treephys/16.6.557
  7. Han, S. S., 1991, Ecophysiological interpretations on the water relations parameters of trees (VI). Diagnosis of drought tolerance by the P-V curves of twenty broad-leaved species, Jour. Korean For. Soc., 80(2), 210-219.
  8. IPCC (Intergovernmental Panel on Climate Change), 2007, Climate change 2007: Mitigation of climate change, contribution of working group III contribution to the fourth assessment report of the intergovern-mental panel on climate change. Cambridge University Press, Cambridge, New York, USA.
  9. Jo, H. K., 2002, Impacts of urban greenspace on offsetting carbon emissions for middle Korea, J. Environ. Manag., 64, 115-126. https://doi.org/10.1006/jema.2001.0491
  10. Je, S. M., Kim, S. H., 2016, Effects of $CaCl_2$ on gas exchange and stomatal responses in the leaves of Prunus serrulata, J. Korean For. Soc., 105(3), 303-308. https://doi.org/10.14578/jkfs.2016.105.3.303
  11. Kim, H. J., Lee, S. H., 2016, Developing the volume models for 5 major species of street trees in Gwangju metropolitan city of Korea. Urban For. Urban Green., 18, 53-58. https://doi.org/10.1016/j.ufug.2016.05.004
  12. Kim, J. J., 2013, The species selection and planting guidelines for street tree to reduce road atmospheric carbon dioxide. J. Kor. Inst. For. Recreation, 17(1), 131-144. https://doi.org/10.34272/forest.2013.17.1.014
  13. KMA (Korea Meteorological Administration), 2011, Automatic weather system (AWS). http://www.kma.go.kr
  14. Koh, S. C., Kang, Y. H., Park, S. M., Oh, S., 2014, Photosystem II activity and $CO_2$ exchange during summer in the leaves of six ornamental tree species, J. Basic Sciences, Jeju Nat'l Univ., 23(1), 31-44.
  15. Laclau, P., 2003. Biomass and carbon seqestration of ponderosa pion plantations and native cypress forests in northwest Patagonia. Forest Ecol. Manag., 180, 317-333. https://doi.org/10.1016/S0378-1127(02)00580-7
  16. Lee, S. K., Sin, Y. H., Noh, N. J., Heo, S. J., Yoon, T. K., Lee, A. R., Abdul, R. S., Lee, W. K., 2009, Carbon storage of natural pine and oak pure and mixed forests in Hoengseong, Kangwon, J. Kor. Forestry Soc., 98(6), 772-779.
  17. Li, Y. G., Jiang, G. M., Niu, S. L., Liu, M. Z., Peng, Y., Yu, S. L., Gao, L. M., 2003, Gas exchange and water use efficiency of three native tree species in Hunshandak Sandland of China. Photosynthetica, 41(2), 227-232. https://doi.org/10.1023/B:PHOT.0000011955.12025.dc
  18. Matos, M. C., Rebelo, E., Lauriano, J., Semedo, J., Marques, N., Campos, P. S., Matos, A., Vieira-da-silva, J., 2004, $CO_2$ assimilation and water relations of almond tree (Prunus amygdalus Batsch) cultivars grown under field conditions. Photosynthetica, 42(3), 473-476. https://doi.org/10.1023/B:PHOT.0000046169.05296.9b
  19. Miehle, P., Livesley, S. J., Feikema, P. M., Lic, C., Arndt, S. K., 2006, Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation. Ecol. Modell., 192, 83-94. https://doi.org/10.1016/j.ecolmodel.2005.07.021
  20. Oh, S., Adams III, W. W., Demmig-Adams, B., Koh, S. C., 2013b, Seasonal photoprotective responses in needles of Korean fir (Abies koreana) over an altitudinal gradient on mount Halla, Jeju Island, Korea. Arctic, Antarctic, Alpine Res., 45(2), 238-248. https://doi.org/10.1657/1938-4246-45.2.238
  21. Oh, S., Lee, J. H., Ko, K. S., Koh, S. C., 2012b, Chlorophyll fluorescence and $CO_2$ fixation capacity in leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu. Korean J. Environ. Biol., 30(2), 98-106.
  22. Oh, S., Lee, J. H., Ko, K. S., Koh, S. C., 2013a, Chlorophyll fluorescence and $CO_2$ fixation capacity of the leaves of tea plants (Camellia sinensis L.) grown in the field, J. Kor. Tea Soc., 19(1), 34-40.
  23. Oh, S., Shin, C. H., Kim, C. S., Kang, H. S., Kang, K. M., Yang, Y. H., Koh, S. C., 2012a, Analysis of $CO_2$ fixation capacity in leaves of ten species in the family Fagaceae. J. Environ. Sci. Int., 21(1), 89-96. https://doi.org/10.5322/JES.2012.21.1.89
  24. Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M., Woo, S. Y., 2018, Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. Forest Sci. Technol., 14(2), 97-104. https://doi.org/10.1080/21580103.2018.1452799
  25. Park, Y. M., 2006, Comparison of tissue water relation parameters in three gardening tree species, J. Ecol. Field Biol., 29(6), 581-584. https://doi.org/10.5141/JEFB.2006.29.6.581
  26. Penuelas, J., Filella, I., Llusia, J., Siscart, D., Pinol, J., 1998, Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia, J. Experi. Bot., 49, 229-238.
  27. Rodhe, H., 1990, A Comparison of the contributions of various gases to the greenhouse effect, Science, 248, 1217-1219. https://doi.org/10.1126/science.248.4960.1217
  28. Su, C. M., Hsueh, H. T., Tseng, C. M., Ray, D. T., Shen, Y. H., Chu, H., 2017, Effects of nutrient availability on the biomass production and $CO_2$ fixation in a flat plate photobioreactor. Aeros. Air Qual. Res., 17, 1887-1897. https://doi.org/10.4209/aaqr.2016.09.0386
  29. Yoon, T. K., Park, C. W., Lee, S. J., Ko, S., Kim, K. N., Son, Y., Lee, K. H., Oh, S., Lee, W. K., Son, Y., 2013, Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green., 12(3), 344-349. https://doi.org/10.1016/j.ufug.2013.03.006
  30. Yordanov, I., Tsonev, T., Velikova, V., Georgieva, K., Ivanov, P., Tsenov, N., Petrova, T., 2001, Changes in $CO_2$ assimilation, transpiration and stomatal resistance of different wheat cultivars experiencing drought under field conditions. Bulg. J. Plant Physiol, 27(3-4), 20-33.
  31. Yu, J. Y., Chang, K. H., Chen, T. F., 2016, Estimation of $CO_2$ assimilation and emission flux of vegetation in Subtropical Island-Taiwan. Aeros. Air Qual. Res., 16(12), 3302-3311.
  32. Zhang, Z. J., Shi, L., Zhang, J. Z., Zhang, C. Y., 2004, Photosynthesis and growth responses of Parthenocissus quinquefolia (L.) Planch to soil water availability. Photosynthetica, 42(1), 87-92. https://doi.org/10.1023/B:PHOT.0000040574.25273.59