Efficient Computation of Radioactive Decay with Graph Algorithms

  • Received : 2019.12.04
  • Accepted : 2020.03.25
  • Published : 2020.03.30


This paper gives two graph-based algorithms for radioactive decay computation. The first algorithm identifies the connected components of the graph induced from the given radioactive decay dynamics to reduce the size of the problem. The solutions are derived over the precalculated connected components, respectively and independently. The second algorithm utilizes acyclic structure of radioactive decay dynamics. The algorithm evaluates the reachable vertices of the induced system graph from the initially activated vertices and finds the minimal set of starting vertices populating the entire reachable vertices. Then, the decay calculations are performed over the reachable vertices from the identified minimal starting vertices, respectively, with the partitioned initial value over the reachable vertices. Formal arguments are given to show that the proposed graph inspired divide and conquer calculation methods perform the intended radioactive decay calculation. Empirical efforts comparing the proposed radioactive decay calculation algorithms are presented.


  1. H. Bateman, "The solution of a system of differential equations occurring in the theory of radio-active transformations", Proc. Cambridge Phil. Soc., 1908 15, 423-427 (1908).
  2. D.R. Vondy, Development of a General Method of Explicit Solution to the Nuclide Chain Equations for Digital Machine Calculations (Thesis), No. ORNL-TM-361, Oak Ridge National Lab., Tenn., 1962.
  3. M.J. Bell, ORIGEN: the ORNL isotope generation and depletion code. No. ORNL--4628. Oak Ridge National Lab., (1973).
  4. J. Cetnar. "General solution of Bateman equations for nuclear transmutations", Annals of Nuclear Energy, 33 (7), 640-645 (2006).
  5. M. Pusa and J. Leppanen, "Computing the matrix exponential in burnup calculations", Nuclear science and engineering, 164(2), 140-150 (2010).
  6. A.E. Isotalo and P.A. Aarnio, "Comparison of depletion algorithms for large systems of nuclides", Annals of Nuclear Energy, 38(2-3), 261-268 (2011).
  7. R. Dreher, "Modified Bateman solution for identical eigenvalues", Annals of Nuclear Energy, 53, 427-438 (2013).
  8. D. Vaden and T. Yoo, "Radioactive Decay Computation with Dynamic Source Terms", Nuclear Science and Engineering, 193(5), 549-553 (2019).
  9. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, and L. Luzzi, "The molten salt reactor (MSR) in generation IV: overview and perspectives", Progress in Nuclear Energy, 77, 308-319 (2014).
  10. T.J. Dolan ed., Molten Salt Reactors and Thorium Energy, Woodhead Publishing (2017).
  11. H. Lee, G. Park, K. Kang, J. Hur, J. Kim, D. Ahn, Y. Cho, and E. Kim, "Pyroprocessing technology development at KAERI", Nuclear engineering and technology, 43(4), 317-328 (2011).
  12. T. Inoue, T. Koyama, and Y. Arai, "State of the art of pyroprocessing technology in Japan", Energy Procedia, 7, 405-413 (2011).
  13. T.Y. Karlsson, G.L. Fredrickson, T. Yoo, D. Vaden, M.N. Patterson, and V. Utgikar, "Thermal analysis of projected molten salt compositions during FFTF and EBR-II used nuclear fuel processing", Journal of Nuclear Materials, 520, 87-95 (2019).
  14. T. Yoo and D. Vaden, "A new inventory tracking method for Mark-V electrorefiner", Annals of Nuclear Energy, 128, 406-413 (2019).
  15. C. Moler and C. Van Loan, "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later", SIAM review, 45(1), 3-49 (2003).
  16. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms, MIT press (2009).
  17. D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions", Journal of symbolic computation, 9(3), 251-280 (1990).
  18. M. B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, and R. Brewer, "ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data", Nuclear data sheets, 112(12), 2887-2996 (2011).
  19. H. Pade, Sur la representation approchee d'une fonction par des fractions rationnelles, No. 740, Gauthier-Villars et fils, 1892.
  20. R.C. Ward, "Numerical computation of the matrix exponential with accuracy estimate", SIAM Journal on Numerical Analysis, 14(4), 600-610 (1977).