DOI QR코드

DOI QR Code

Electrochemical Impedance Spectroscopy and Cyclic Voltammetry Methods for Monitoring SmCl3 Concentration in Molten Eutectic LiCl-KCl

  • Shaltry, Michael R. (Idaho National Laboratory) ;
  • Allahar, Kerry N. (Boise State Univ.) ;
  • Butt, Darryl P. (Univ. of Utah, Department of Materials Science & Engineering) ;
  • Simpson, Michael F. (Univ. of Utah, Department of Materials Science & Engineering) ;
  • Phongikaroon, Supathorn (Virginia Commonwealth Univ.)
  • Received : 2019.11.05
  • Accepted : 2020.03.10
  • Published : 2020.03.30

Abstract

Molten salt solutions consisting of eutectic LiCl-KCl and concentrations of samarium chloride (0.5 to 3.0 wt%) at 500℃ were analyzed using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV technique gave the average diffusion coefficient for Sm3+ over the concentration range. Equipped with Sm3+ diffusion coefficient, the Randles-Sevcik equation predicted Sm3+ concentration values that agree with the given experimental values. From CV measurements; the anodic, cathodic, and half-peak potentials were identified and subsequently used as a parameter to acquire EIS spectra. A six-element Voigt model was used to model the EIS data in terms of resistance-time constant pairs. The lowest resistances were observed at the half-peak potential with the associated resistance-time constant pairs characterizing the reversible reaction between Sm3+ and Sm2+. By extrapolation, the Voigt model estimated the polarization resistance and established a polarization resistance-concentration relationship.

References

  1. I. Johnson, "The Thermodynamics of Pyrochemical Processes for Liquid Metal Reactor Fuel Cycles", J. Nucl. Mater., 154, 169-180 (1988). https://doi.org/10.1016/0022-3115(88)90131-6
  2. J.P. Ackerman, "Chemical Basis for Pyrochemical Reprocessing of Nuclear Fuel", Ind. Eng. Chem. Res., 30, 141-145 (1991). https://doi.org/10.1021/ie00049a022
  3. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy., 31, 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  4. M.F. Simpson, T. Yoo, R.W. Benedict, S. Phongikaroon, S. Frank, P. Sachdev, and K. Hartman, "Strategic Minimization of High-Level Waste from Pyroprocessing of Spent Nuclear Fuel", GLOBAL 2007: Adv. Nucl. Fuel Cycles and Syst., 1394-1397 (2007).
  5. T. Inoue, T. Koyama, and Y. Arai, "State of the Art of Pyroprocessing Technology in Japan", Energy Procedia, 7, 405-413 (2011). https://doi.org/10.1016/j.egypro.2011.06.053
  6. H. Lee, G. Park, K. Kang, J. Hur, J. Kim, D. Ahn, Y. Cho, and E. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43, 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  7. M.A. Williamson and J.L. Willit, "Pyroprocessing Flowsheets for Recycling Used Nuclear Fuel", Nucl. Eng. Technol., 43, 329-334 (2011). https://doi.org/10.5516/NET.2011.43.4.329
  8. T. Yoo and D.E. Vaden, "A New Inventory Tracking Method for Mark-V Electrorefiner", Ann. Nucl. Energy, 128, 406-413 (2019). https://doi.org/10.1016/j.anucene.2019.01.008
  9. T. Yoo, B.R. Westphal, and K.P. Carney, "Nuclear Material Input Accountancy with a Representative Sampling Method", Ann. Nucl. Energy, 135, 106970 (2020). https://doi.org/10.1016/j.anucene.2019.106970
  10. A.N. Williams, G.G. Galbreth, and J. Sanders, "Accurate Determination of Density, Surface Tension, and Vessel Depth Using a Triple Bubbler System", J. Ind. Eng. Chem., 63, 149-156 (2018). https://doi.org/10.1016/j.jiec.2018.02.011
  11. J. Kim, J. Lee, S. Bae, S. Paek, S. Kim, T. Kim, and T. Park, "Automated High-Temperature Liquid Level Measurement System Using a Dynamic Tube Pressure Technique", J. Ind. Eng. Chem., 49, 30-35 (2017). https://doi.org/10.1016/j.jiec.2016.10.041
  12. H. Seo, S. Park, B. Won, S. Ahn, H. Shin, S. Na, D. Song, H. Kim, and S. Lee, "Development of a Neutron Measurement System in Unified Non-Destructive Assay for the PRIDE Facility", J. Korean Phys. Soc., 63, 2080-2084 (2013). https://doi.org/10.3938/jkps.63.2080
  13. M.C. Miller and D.A. Vega, "U.S. Fuel Cycle Technologies R&D Program for Next Generation Nuclear Materials Management", Proc. of Int. Congr. Adv. Nucl. Power Plants, ICAPP 2013 Nucl. Power - A Safe Sustain. Choice Green Futur. Held with 28th KAIF/KNS Ann. Conf., 869-876 (2013).
  14. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashiz, and M. Tokiwai, "An Experimental Study of Molten Salt Electrorefining of Uranium Using Solid Iron Cathode and Liquid Cadmium Cathode for Development of Pyrometallurgical Reprocessing", J. Nucl. Sci. Technol., 34, 384-393 (1997). https://doi.org/10.1080/18811248.1997.9733678
  15. R.K. Ahluwalia and T.Q. Hua, "Electrotransport of Uranium from a Liquid Cadmium Anode to a Solid Cathode", Nucl. Technol., 140, 41-50 (2002). https://doi.org/10.13182/NT02-A3322
  16. S.X. Li, S.D. Herrmann, K.M. Goff, M.F. Simpson, and R.W. Benedict, "Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt", Nucl. Technol., 165, 190-199 (2009). https://doi.org/10.13182/NT09-A4085
  17. R.O. Hoover, S. Phongikaroon, S.X. Li, M.F. Simpson, and T. Yoo, "A Computational Model of the Mark-IV Electrorefiner: Phase I-Fuel Basket/Salt Interface", J. Eng. Gas Turbines Power, 131 (2009).
  18. R.O. Hoover, S. Phongikaroon, M.F. Simpson, S.X. Li, and T. Yoo, "Development of Computational Models for the Mark-IV Electrorefiner-Effect of Uranium, Plutonium, and Zirconium Dissolution at the Fuel Basket-Salt Interface", Nuc. Technol., 171(3), 276-284 (2010). https://doi.org/10.13182/NT10-2A
  19. Y. Sakamura, M. Iizuka, T. Koyama, S. Kitawaki, and A. Nakayoshi, "Novel Approach to Extracting Transuranic Elements in Molten Salt Electrorefining", Nucl. Technol., 190, 193-206 (2015). https://doi.org/10.13182/NT14-64
  20. T.Y. Karlsson, G.L. Fredrickson, T. Yoo, D.E. Vaden, M.N. Patterson, and V. Utgikar, "Thermal Analysis of Projected Molten Salt Compositions During FFTF and EBR-II Used Nuclear Fuel Processing", J. Nucl. Mater., 520, 87-95 (2019). https://doi.org/10.1016/j.jnucmat.2019.04.016
  21. P. Masset, D. Bottomley, R. Konings, R. Malmbeck, A. Rodrigues, J. Serp, and J.P. Glatz, "Electrochemistry of Uranium in Molten LiCl-KCl Eutectic", J. of the Electrochem. Soc., 152(6) A1109-A1115 (2005). https://doi.org/10.1149/1.1901083
  22. P. Masset, R.J.M. Konings, R. Malmbeck, J. Serp, and J.P. Glatz, "Thermochemical Properties of Lanthanides (Ln = La, Nd) and Actinides (An = U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic", J. of Nucl. Mater., 344, 173-179 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.038
  23. S. Ghosh, S. Vandarkuzhali, N. Gogoi, P. Venkatesh, G. Seenivasan, B. Prabhakara Reddy, and K. Nagarajan, "Anodic Dissolution of U, Zr and U-Zr Alloy and Convolution Voltammetry of $Zr^{4+}{\mid}Zr^{2+}$ Couple in Molten LiCl-KCl Eutectic", Electrochem. Acta, 56, 8204-8218 (2011). https://doi.org/10.1016/j.electacta.2011.06.027
  24. R.O. Hoover, M.R. Shaltry, S. Martin, K. Sridharan, and S. Phongikaroon, "Electrochemical Studies and Analysis of 1-10 wt% UCl3 Concentrations in Molten LiCl-KCl Eutectic", J. of Nucl. Mater., 452, 389-396 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.057
  25. C.S. Wang, Y. Liu, H. He, F.X. Gao, L.S. Liu, S.W. Chang, J.H. Guo, L. Chang, R.X. Li, and Y.G. Ouyang, "Electrochemical Separation of Uranium and Cerium in Molten LiCl-KCl", J. of Radioanal. and Nucl. Chem., 298, 581-586 (2013). https://doi.org/10.1007/s10967-013-2506-y
  26. J. Serp, R.J.M. Konings, R. Malmbeck, J. Rebizant, C. Scheppler, and J.P. Glatz, "Electrochemical Behavior of Plutonium Ion in LiCl-KCl Eutectic Melts", J. of Electroanal. Chem., 561, 143-148 (2004). https://doi.org/10.1016/j.jelechem.2003.07.027
  27. G. Cordoba and C. Caravaca, "An Electrochemical Study of Samarium Ions in the Molten Eutectic LiCl+KCl", J. of Electroanal. Chem., 572, 145-151 (2004). https://doi.org/10.1016/j.jelechem.2004.05.029
  28. T.-J. Kim, B.O. Jeong, E. H. Lee, D.-H. Ahn, Y. Jung, and S.W. Paek, "Understanding of Electrochemical Reduction of $Sm^{3+}$ in a LiCl-KCl Molten Salt at 773 K", Int. J. of Electrochem. Sci., 7, 11257-11263 (2012).
  29. Y. Castrillejo, C. de la Fuenta, M. Vega, F. de la Rosa, R. Pardo, and E. Barrado, "Cathodic Behavior and Oxoacidity Reaction of Samarium (III) in Two Molten Chlorides with Different Acidity Properties: The Eutectic LiCl-KCl and the Equimolar $CaCl_2-NaCl$ Melt", Electrochim. Acta, 97, 120-131 (2013). https://doi.org/10.1016/j.electacta.2013.02.115
  30. D. Yoon, J. Pormatikul, M. Shaltry, S. Phongikaroon, and K. Allahar, "Determination of Kinetic Properties of Sm(III)/Sm(II) Reaction in LiCl-KCl Molten Salt Using Cyclic Voltammetry and Electrochemical Impedance Spectroscopy", J. of Radioanal. And Nucl. Chem., 322, 2, 1031-1037 (2019). https://doi.org/10.1007/s10967-019-06796-z
  31. L. Cassayre, J. Serp, P. Soucek, R. Malmbeck, J. Rebizant, and J.P. Glatz, "Electrochemistry of Thorium in LiCl-KCl Eutectic Melts", Electrochim. Acta, 52, 7432-7437 (2007). https://doi.org/10.1016/j.electacta.2007.06.022
  32. M.R. Bermejo, J. Gomez, J. Medina, A.M. Marinez, and Y. Castrillejo, "The Electrochemistry of Gadolinium in the Eutectic LiCl-KCl on W and Al Electrodes", J. of Electroanal. Chem., 588, 253-266 (2006). https://doi.org/10.1016/j.jelechem.2005.12.031
  33. C. Wang, Y. Liu, H. Hi, F. Gao, L. Liu, S. Chang, J. Guo, L. Chang, and Y. Ouyang, "Electrochemical Behavior of Cerium Ion in Molten LiCl-KCl", J. of Rare Earths, 31, 405-409 (2013). https://doi.org/10.1016/S1002-0721(12)60295-6
  34. T.J. Kim, D.H. Ahn, S.W. Paek, and Y. Jung, "Study on Electrodeposition of Ce(III) at a Tungsten Electrode in a LiCl-KCl Molten Salt Solution", Int. J. of Electrochem. Sci., 8, 9180-9186 (2013).
  35. K.C. Marsden and B. Pesic, "Evaluation of the Electrochemical Behavior of CeCl3 in Molten LiCl-KCl Eutectic Utilizing Metallic Ce as an Anode", J. of the Electrochem. Soc., 158(6), F111-F120 (2011). https://doi.org/10.1149/1.3575637
  36. Y. Castrillejo, M.R. Bermejo, E. Barrado, and A.M. Martinez, "Electrochemical Behaviour of Erbium in the Eutectic LiCl-KCl at W and Al Electrodes", Electrochim. Acta, 51, 1941-1951 (2006). https://doi.org/10.1016/j.electacta.2005.07.004
  37. P. Masset, C. Apostolidis, R.J.M. Konings, R. Malmbeck, J. Rebizant, J. Serp, and J.-P. Glatz, "Electrochemical Behaviour of Neptunium in the Molten LiCl-KCl Eutectic", J. of Electroanal. Chem., 603, 166-174 (2007). https://doi.org/10.1016/j.jelechem.2007.01.028
  38. D. Vaden, "Fuel Conditioning Facility Electrorefiner Model Predictions Versus Measurements", Sep. Sci. Technol., 43, 2684-2694 (2008). https://doi.org/10.1080/01496390802122147
  39. R.A. Borrelli, "Use of Curium Neutron Flux from Head-End Pyroprocessing Subsystems for the High Reliability Safeguards Methodology", Nucl. Eng. Des., 277, 166-172 (2014). https://doi.org/10.1016/j.nucengdes.2014.06.028
  40. D. Rappleye, S. Jeong, and M. Simpson, "Application of Multivariate Analysis Techniques to Safeguards of the Electrochemical Treatment of Used Nuclear Fuel", Ann. Nucl. Energy, 77, 265-272 (2015). https://doi.org/10.1016/j.anucene.2014.11.023
  41. X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, Springer, London (2010).
  42. V. Encinas-Sanchez, M.T. de Miguel, M.I. Lasanta, G. Garcia-Martin, and F.J. Perez, "Electrochemical Impedance Spectroscopy (EIS): An Efficient Technique for Monitoring Corrosion Processes in Molten Salt Environments in CSP Applications", Sol. Energy Mater. and Sol. Cells, 191, 157-163 (2019). https://doi.org/10.1016/j.solmat.2018.11.007
  43. B.J. Merten, Coating Evaluation by Electrochemical Impedance Spectroscopy, United States Bureau of Reclamation Report, ST-2016-7673-1 (2015).
  44. D.D. MacDonald, "Review of Mechanistic Analysis by Electrochemical Impedance Spectroscopy", Electrochim. Acta, 35, 1509-1525 (1990). https://doi.org/10.1016/0013-4686(90)80005-9
  45. A. Kisza and J. Kazmierczak, "Kinetics of Electrode Reactions on Metallic Electrodes in Pure Molten Chlorides", Chem. Papers, 45, 187-194 (1991).
  46. S.A. Kuznetsov and M. Gaune-Escard, "Electrochemical Transient Techniques for Study of the Electrochemistry and Thermodynamics of Nuclear Materials in Molten Salts", J. Nucl. Mater., 389, 108-114 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.015
  47. H. Tao and B. Pesic, "Electrochemical Behavior of LaCl3 and Morphology of La Deposit on Molybdenum Substrate in Molten LiCl-KCl Eutectic Salt", Electrochim. Acta, 119, 120-130 (2014). https://doi.org/10.1016/j.electacta.2013.11.148
  48. G. Salinas-Solano, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, V.M. Salinas-Bravo, J.A. Ascencio-Gutierrez, and L. Martinez-Gomez, "High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts", Adv. Mater. Sci. Eng., 2014, 696081 (2014).
  49. J.L. Trinstancho-Reyes, M. Sanchez-Carrillo, R. Sandoval-Jabalera, V.M. Orozco-Carmona, F. Almeraya-Calderon, J.G. Chacon-Nava, J.G. Gonzalez-Rodriguez, and A. Martinez-Villafane, "Electrochemical Impedance Spectroscopy Investigation of Alloy Inconel 718 in Molten Salts at High Temperature", Int. J. Electrochem. Sci., 6, 419-431 (2011).
  50. M. Misra, K.S. Raja, and J. Ruppert, "Electrochemical Corrosion Behavior of Refractory Metals in $LiCl-Li_2O$ Molten Salt", ECS Trans., 33, 181-192 (2010).
  51. J.-Y. Kim, Y.S. Choi, S.-E. Bae, I. Yum, D.H. Kim, J.-W. Yeon, and K. Song, "Electrical Conductivity Measurement of Molten Salts Using a Two-Electrode Alternative Current Impedance Method", Asian J. Chem., 25, 7028-7030 (2013). https://doi.org/10.14233/ajchem.2013.10
  52. U. Stohr and W. Freyland, "Electrochemical Impedance Investigations of Redox Mechanisms of Refractory Metal Compounds in Molten Salts. I. Niobium Chloride and Oxychloride in CsCl-NaCl Eutectic Melt", Electrochim. Acta, 44, 2199-2207 (1999). https://doi.org/10.1016/S0013-4686(98)00350-8
  53. Z. Chen, J. Liu, Z. Yu, and K.C. Chuo, "Electrical Conductivity of $CaCl_2-KCl-NaCl$ System at 1080 K", Thermochim. Acta, 543, 107-112 (2012). https://doi.org/10.1016/j.tca.2012.05.007
  54. S.A. Kuznetsov and M. Gaune-Escard, "Electronic Conductivity of NaCl-KCl Equimolar Melt Containing Eu(III) and Eu(II) Complexes by Electrochemical Impedance Spectroscopy", Z. Naturforsch., 61a, 486-490 (2006). https://doi.org/10.1515/znb-2006-0415
  55. E.V. Kirillova and V.P. Stepanov, "Capacitance of the Double Electrical Layer on the Copper-Group Metals in Molten Alkali Metal Halides", Russ. Metall., 2016, 691-697 (2016). https://doi.org/10.1134/S0036029516020051
  56. A. Kisza, "The Capacitance of the Diffuse Layer of Electric Double Layer of Electrodes in Molten Salt", Electrochim. Acta, 51, 2315-2321 (2006). https://doi.org/10.1016/j.electacta.2005.03.093
  57. D. Rappleye and M.F. Simpson, "Application of the Rotating Cylinder Electrode in Molten LiCl-KCl Eutectic Containing Uranium(III)- and Magnesium(II)-Chloride", J. Nucl. Mater., 487, 362-372 (2017). https://doi.org/10.1016/j.jnucmat.2017.02.037
  58. D. Yoon and S. Phongikaroon, "Electrochemical Properties and Salt Analyses of $CeCl_3$ in LiCl-KCl Eutectic Salt", J. Electrochem. Soc., 162, E237-E243 (2015). https://doi.org/10.1149/2.0401510jes
  59. S. Guo, E. Wu, and J. Zhang, "Exchange Current Density of Gd(III)/Gd Reaction in LiCl-KCl Eutectic and Analysis of Errors Caused by Various Methods ", Electrochim. Acta, 259, 253-261 (2018). https://doi.org/10.1016/j.electacta.2017.10.158
  60. B. Prabhakara Reddy, S. Vandarkuzhali, T. Subramanian, and P. Venkatesh, "Electrochemical Studies on the Redox Mechanism of Uranium Chloride in Molten LiCl-KCl Eutectic", Electrochim. Acta, 49, 2471-2478 (2004). https://doi.org/10.1016/j.electacta.2004.02.002
  61. S. Ghosh, S. Vandarkuzhali, P. Venkatesh, G. Seenivasan, T. Subramanian, B. Prabhakara Reddy, and K. Nagarajan, "Redox Behavior of Cerium Oxychloride in Molten $MgCl_2-NaCl-KCl$ Eutectic", Electrochim. Acta, 52, 1206-1212 (2006). https://doi.org/10.1016/j.electacta.2006.07.019
  62. S. Vandarkuzhali, N. Gogoi, S. Ghosh, B. Prabhakara Reddy, and K. Nagarajan, "Electrochemical Behaviour of $LaCl_3$ at Tungsten and Aluminium Cathodes in LiCl-KCl Eutectic Melt", Electrochim. Acta, 59, 245-255 (2012). https://doi.org/10.1016/j.electacta.2011.10.062
  63. D.M. Ferry and G.S. Picard, "Impedance Spectroscopy of the Ti(IV)/Ti(III) Redox Couple in the Molten LiCl-KCl Eutectic Melt at $470^{\circ}C$", J. of Appl. Electrochem., 20, 125-131 (1990). https://doi.org/10.1007/BF01012481
  64. K. Liu, Y.L. Liu, L.Y. Yuan, H. He, Z.Y. Yang, X.L. Zhao, Z.F. Chai, and W.Q. Shi, "Electroextraction of Samarium from $Sm_2O_3$ in Chloride Melts", Electrochim. Acta, 129, 401-409 (2014). https://doi.org/10.1016/j.electacta.2014.02.136
  65. P. Agarwal, M.E. Orazem, and L.H. Garcia-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy", J. Electrochem. Soc., 139, 1917-1927 (1992). https://doi.org/10.1149/1.2069522
  66. P. Zoltowski, "A New Approach to Measurement Modelling in Electrochemical Impedance Spectroscopy", J. Electroanal. Chem., 375, 45-57 (1994). https://doi.org/10.1016/0022-0728(94)13406-5
  67. K.N. Allahar, M.E. Orazem, D.P. Butt, H.A. Chin, W. Ogden, and R. Yungk, "Impedance of Steels in New and Degraded Ester Based Lubricating Oil", Electrochim. Acta, 51(8-9), 1497-1504 (2006). https://doi.org/10.1016/j.electacta.2005.02.130