Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites

키토산/제올라이트 복합체의 이산화탄소 흡착 특성

  • Hong, Woong-Gil (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Hwang, Kyung-Jun (NanoSD Inc.) ;
  • Jeong, Gyeong-Won (Department of Bioenvironmental & Chemical Engineering, Chosun College of Science and Technolgy) ;
  • Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Shim, Wang Geun (Department of Polymer Science and Engineering, Sunchon National University)
  • 홍웅길 (순천대학교 공과대학 고분자공학과) ;
  • 황경준 ;
  • 정경원 (조선이공대학교 생명환경화공과) ;
  • 윤순도 (전남대학교 공과대학 생명화학공학과) ;
  • 심왕근 (순천대학교 공과대학 고분자공학과)
  • Received : 2020.02.18
  • Accepted : 2020.03.10
  • Published : 2020.04.10


In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).


Supported by : 한국연구재단


  1. IEA, Prospects for $CO_2$ capture and storage, Energy Technology Analysis, Paris, France (2004).
  2. E. Klein, Affinity membranes: A 10-year review, J. Membr. Sci., 179, 1-27 (2000).
  3. S. H. Hyun, S. Y. Jo, and B. S. Kang, Surface modification of ${\gamma}$-alumina membranes by silane coupling for $CO_2$ separation, J. Membr. Sci., 120, 197-206 (1996).
  4. Y. M. Cho, J. Y. Lee, S. B. Kwon, D. S. Park, J. S. Choi, and J. Y. Lee, Adsorption and desorption characteristics of carbon dioxide at low concentration on zeolite 5A and zeolic 13X, J. Korean Soc. Atmos. Environ., 27, 191-200 (2011).
  5. Proceedings of the 5th International Symposium on Gas Cleaning, Pittsburgh, USA (2002).
  6. A. Jamal, A. Meisen, and C. J. Lim, Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-I. Experimental apparatus and mathematical modeling, Chem. Eng. Sci., 61, 6571-6589 (2006).
  7. J. C. S. Terra, J. A. Moores, and F. C. C. Moura, Amine-functionalized mesoporous silica as a support for on-demand release of copper in the $A^3$-coupling reaction: Ultralow concentration catalysis and confinement effect, ACS Sustain. Chem. Eng., 7, 8696-8705 (2019).
  8. Z. Hu, D. Zhang, and J. Wang, Direct synthesis of amine-functionalized mesoporous silica for $CO_2$ adsorption, Chin. J. Chem. Eng., 19, 386-390 (2011).
  9. R. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. Losch, Adsorption of $CO_2$ on zeolites at moderate temperatures, Energy Fuel, 19, 1153-1159 (2005).
  10. M. Pellerano, P. Pre, M. Kacem, and A. Delebarre, $CO_2$ capture by adsorption on activated carbons using pressure modulation, Energy Procedia, 1, 647-653 (2009).
  11. M. Oschatz and M. Antonietti, A search for selectivity to enable $CO_2$ capture with porous adsorbents, Energ. Environ. Sci., 11, 57-70 (2018).
  12. M. J. Lashaki, S. Khiavi, and A. Sayari, Stability of amine-functionalized $CO_2$ adsorbents: A multifaceted puzzle, Chem. Soc. Rev., 48, 3320-3405 (2019).
  13. C. Kim, H. S. Cho, S. Chang, S. J. Cho, and M. Choi, An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation, Energ. Environ. Sci., 9, 1803-1811 (2016).
  14. K. Min, W. Choi, C. Kim, and M. Choi, Oxidation-stable amine-containing adsorbents for carbon dioxide capture, Nat. Commun., 9, 726 (2018).
  15. K.-J. Hwang, W.-S. Choi, S.-H. Jung, Y.-J. Kwon, S. Hong, C. Choi, J.-W. Lee, and W.-G. Shim, Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide, RSC Adv., 8, 9524-9529 (2018).
  16. S, Brunauer, P. H. Emmett, and E, Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938).
  17. E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951).
  18. M. M. Dubinin and L. V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR, 55, 327-329 (1947).
  19. D. Avnir and M. Jaroniec, An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials, Langmuir, 5, 1431-1433 (1989).
  20. M. Jaroniec and R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, Netherland (1988).
  21. W. Rudzinski and D. Everett, Adsorption of Gases on Heterogeneous Solid Surfaces, Academic Press, London, England (1991).
  22. K.-J. Hwang, C. Im, D.W. Cho, S.-J. Yoo, J.-W. Lee, and W.-G. Shim, Enhanced photovoltaic properties of $TiO_2$ film prepared by polycondensation in sol reaction, RSC Adv., 2, 3034-3048 (2012).
  23. N. M. Julkapli, Z. Ahmad, and H. M. Akil, X-Ray diffraction studies of cross linked chitosan with different cross linking agents for waste water treatment application, AIP Conf. Proc., 1202, 106-111 (2010).
  24. F. Zamani, M. Rezapour, and S. Kianpour, Immobilization of L-lysine on zeolite 4A as an organic-inorganic composite basic catalyst for synthesis of ${\alpha},{\beta}$-unsaturated carbonyl compounds under mild conditions, Bull. Korean Chem. Soc., 34, 2367-2374 (2013).
  25. T. C. Drage, K. M. Smith, A. Arenillas, and C. E. Snape, Developing strategies for the regeneration of polyethylenimine based $CO_2$ adsorbents, Energy Procedia, 100, 875-880 (2009).
  26. C. Tien, Adsorption Calculations and Modelling, Butterworth-Heinemann, London, England (1994).
  27. D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, England (1998).
  28. G. Sneddon, A. Y. Ganin, and H. H. P. Yiu, Sustainable $CO_2$ adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology, Energy Technol., 3, 249-258 (2015).
  29. Y. H. Yoon, S. D. Yoon, J. W. Nah, and W. G. Shim, Adsorption and release characteristics of sulindac on chitosan-based molecularly imprinted functional polymer films, Appl. Chem. Eng., 30, 233-240 (2019).
  30. J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504 (2009).
  31. A. L. Myers and J. M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE J., 11, 121-127 (1965).
  32. D. Panda, E. A. Kumar, S. K. Singh, Amine modification of binder-containing zeolite 4A bodies for post-combustion $CO_2$ capture, Ind. Eng. Chem. Res., 58, 5301-5313 (2019).