DOI QR코드

DOI QR Code

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle

헬륨 냉동사이클을 이용한 수소액화 공정모사 연구

  • Park, Hoey Kyung (Future Environment and Energy Research Institute, Sangmyung University) ;
  • Park, Jin-Soo (Future Environment and Energy Research Institute, Sangmyung University)
  • 박회경 (상명대학교 미래 환경.에너지 연구소) ;
  • 박진수 (상명대학교 미래 환경.에너지 연구소)
  • Received : 2019.12.12
  • Accepted : 2020.02.06
  • Published : 2020.04.10

Abstract

Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

Acknowledgement

Supported by : 한국연구재단

References

  1. H. T. Hwang and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42-48 (2014). https://doi.org/10.1016/j.coche.2014.04.004
  2. Z. Yanxing, G. Maoqiong, Z. Yusn, and D. Xueqiang, Thermo-dynamics analysis of hydrogen storage base on compressed gaseous hydrogen, liquid, hydrogen and cryo-compressed hydrogen, Int. J. Hydrogen Energy, 44, 16833-16840 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.207
  3. M. Kaur and K. Pal, Review on hydrogen storage materials and methods from an electrochemical viewpoint, J. Energy Storage, 23, 234-249 (2019). https://doi.org/10.1016/j.est.2019.03.020
  4. A. Lahnaoui, C. Wulf, H. Heinrichs, and D. Dalmazzone, Opimizing hydrogen transportation system for mobility via compressed hydrogen trucks, Int. J. Hydrogen Energy, 44, I9302-I9312 (2019).
  5. T. Sinigaglia, F. Lewiski, M. E. S. Martins, and J. C. M Siluk, Production, storage, fuel stations of hydrogen and its utilization in automotive applications - A review, Int. J. Hydrogen Energy, 42(39), 24597-24611 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.063
  6. H. T. Hwang, and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 44-48 (2014).
  7. B. L. Salvi and K. A. Subramanian, Sustainable development of road transportation sector using hydrogen energy system, Renew. Sustain. Energy Rev., 51, 1132-1155 (2015). https://doi.org/10.1016/j.rser.2015.07.030
  8. J. Andersson and S. Gronkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(23), 11901-11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
  9. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(29), 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  10. U. Cardella, L. Decker, and H. Klein, Roadmap to economically viable hydrogen liquefaction, Int. J. Hydrogen Energy, 42, 13329-13338 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.068
  11. B. Sorensen, Hydrogen and fuel cells: Emerging technologies and applications, Academic Press, 65-91 (2018).
  12. S. Krasae-in, J. H. Stang, and P. Neksa, Development of large-scale hydrogen liquefaction precesses from 1898 to 2009, Int. J. Hydrogen Energy, 35(10), 4524-4533 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.109
  13. M. S. Sadaghiani and M. Mehrpooya, Introducing and energy analysis of novel cryogenic hydrogen liquefaction process configuration, Int. J. Hydrogen Energy, 42(9), 6033-6050 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.136
  14. C. Yilmaz, M. Kanoglu, A. Bolatturk, and M. Gadalla, Economics of hydrogen production and liquefaction by geothermal energy, Int. J. Hydrogen Energy, 37, 2058-2069 (2012). https://doi.org/10.1016/j.ijhydene.2011.06.037
  15. D. O. Berstad, J. H. Stang, and P. Neksa, Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling, Int. J. Hydrogen Energy, 35, 4512-4523 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.001
  16. G. Valenti and E. Macchi, Proposal of an innovative, high-efficiency large-scale hydrogen liquefier, Int. J. Hydrogen Energy, 33, 3166-3121 (2008).
  17. C. R. Baker and R. L. Shaner, A study of the efficiency of hydrogen liquefaction, Int. J. Hydrogen Energy, 3, 321-334 (1978). https://doi.org/10.1016/0360-3199(78)90037-X
  18. D. Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 1197-1203 (1972).
  19. H. W. Wolley, R. B. Scott, and F. G. Brickwedde, Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications, J. Res. Nat. Bur. Std., 41, 379-475 (1948). https://doi.org/10.6028/jres.041.037
  20. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, A cubic equation of state with a new alpha function and new mixing rule, Fluid Phase Equilib., 69(10), 33-50 (1991). https://doi.org/10.1016/0378-3812(91)90024-2
  21. T. F. Edgar and D. M. Himmelbrau, Optimization of Chemical Processes, McGraw-Hill Book Company, (1997).
  22. W. Wagner, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, 13(8), 470-482 (1973). https://doi.org/10.1016/0011-2275(73)90003-9
  23. A. Van Itterbeek, K. Staes, O. Verbeke, and F. Theeuwes, Vapour pressure of saturated liquid methane, Physica, 30(10), 1896-1900 (1964). https://doi.org/10.1016/0031-8914(64)90068-0
  24. R. D. Goodwin, H. M. Roder, and G. C. Straty, Thermophysical Properties of Ethane, from 90 to 600 K at Pressures to 700 bar, Boulder, Colorado: Dept. of Commerce, National Bureau of Standards, Institute for Basic Standards, Cryogenics Division (1976).
  25. L. I. Dana, A. C. Jenkins, H. E. Burdick, and R. C. Timm, Thermodynamic properties of butane, isobutane, and propane, Refrig. Eng., 12(12), 387-405 (1926).
  26. P. Donaubauer, U. Cardella, L. Decker, and H. Klein, Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction, Chem. Eng. Technol., 42(3), 669-679 (2019). https://doi.org/10.1002/ceat.201800345
  27. I. Lee and I. Moon. Strategies for process and size selection of natural gas liquefaction processes: Specific profit portfolio approach by economic based optimization, Ind. Eng. Chem. Res., 57(17), 5845-5857 (2017). https://doi.org/10.1021/acs.iecr.7b03327
  28. K. Vink and R. Nagelvoort, 3.6 Comparison of baseload liquefaction processes, in International Conference on Liquefied Natural Gas, Perth, Australia (1998).
  29. Y. E. Yuksel, M. Ozturk, and I. Dincer, Analysis and assessment of a novel hydrogen liquefaction process, Int. J. Hydrogen Energy, 42(16), 11429-11438 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.064