Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds

유기인 계열 독성물질 분해를 위한 바이오스캐빈저 최신 연구 동향

  • Kim, Heejeong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
  • 김희정 (육군사관학교 물리화학과) ;
  • 정근홍 (육군사관학교 물리화학과) ;
  • 계영식 (육군사관학교 물리화학과)
  • Received : 2020.03.03
  • Accepted : 2020.03.21
  • Published : 2020.04.10


In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.


Supported by : 육군사관학교


  1. I. Koplovitz, S. M. Schulz, R. F. Railer, M. Sigler, and R. B. Lee, Effect of atropine and diazepam on the efficacy of oxime treatment of nerve agent intoxication, J. Med. CBR. Def., 5, 1-15 (2007).
  2. J. Newmark, Seminars in Neurology, 24, 185-196, Thieme Medical Publishers, Inc., New York, USA (2004).
  3. P. Taylor, Anticholinesterase agents, In: L. L. Brunton, B. A. Chabner, B. C. Knollmann (eds.), Goodman & Gilman's the Pharmacological Basis of Therapeutics, 239-254, McGraw-Hill, New York, USA (2011).
  4. M. Trovaslet-Leroy, L. Musilova, F. Renault, X. Brazzolotto, J. Misik, L. Novotny, M. T. Froment, E. Gillon, M. Loiodice, L. Verdier, and P. Masson, Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents, Toxicol. Lett., 206, 14-23 (2011).
  5. F. Nachon, X.Brazzolotto, M. Trovaslet, and P. Masson, Progress in the development of enzyme-based nerve agent bioscavengers, Chem. Biol. Interact., 206, 536-544 (2013).
  6. J. Descotes, Immunotoxicology of Drugs and Chemicals: An Experimental and Clinical Approach, 2-18, Elsevier, Amsterdam, Netherlands (2004).
  7. N. Aurbek, H. Thiermann, F. Eyer, P. Eyer, and F. Worek, Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: A kinetic analysis, Toxicology, 259, 133-139 (2009).
  8. K. G. McGarry, R. F. Lalisse, R. A. Moyer, K. M. Johnson, A. M. Tallan, T. P. Winters, J. E. Taris, C. A. McElroy, E. E. Lemmon, H. S. Shafaat, Y. Fan, A. Deal, S. C. Marguet, J. A. Harvilchuck, C. M. Hadad, and D. W. Wood, A novel, modified human butyrylcholinesterase catalytically degrades the chemical warfare nerve agent, sarin, Toxicol. Sci., 174, 133-146 (2019).
  9. J. Estevez and E. Vilanova, Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: Esterases and organophosphorus compounds, Crit. Rev. Toxicol., 39, 427-448 (2009).
  10. W. N. Aldridge, Organophosphorus compounds: Molecular basis for their biological properties, Sci. Prog., 67, 138-139 (1981).
  11. F. Worek, N. Aurbek, T. Wille, P. Eyer, and H. Thiermann, Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: A theoretical approach, J. Enzyme Inhib., 26, 303-308 (2010).
  12. R. L. Maynard and F. W. Beswick, Clinical and Experimental Toxicology of Organophosphates and Carbamates, 373-385, Elsevier, Oxford, UK (1992).
  13. G. E. Garcia, A. J. Campbell, J. Olson, D. Moorad-Doctor, and V. I. Morthole, Novel oximes as blood-brain barrier penetrating cholinesterase reactivators, Chem. Biol. Interact., 187, 199-206 (2010).
  14. G. Mercey, T. Verdelet, G. Saint-Andre, E. Gillon, A. Wagner, R. Baati, L. Jean, F. Nachon, and P. Y. Renard, First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase, Chem. Commun., 47, 5295-5297 (2011).
  15. J. Kalisiak, E. C. Ralph, and J. R. Cashman, Nonquaternary reactivators for organophosphate-inhibited cholinesterases, J. Med. Chem., 55, 465-474 (2011).
  16. M. Katalinic, N. Macek Hrvat, K. Baumann, S. Morasi Pipercic, S. Makaric, S. Tomic, O. Jovic, T. Hrenar, A. Milicevic, D. Jelic, S. Zunec, I. Primozic, and Z. Kovarik, A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers, Toxicol. Appl. Pharmacol., 310, 195-204 (2016).
  17. J. G. Clement, D. G. Bailey, H. D. Madill, L. T. Tran, and J. D. Spence, The acetylcholinesterase oxime reactivator HI-6 in man: Pharmacokinetics and tolerability in combination with atropine, Biopharm. Drug Dispos., 16, 415-425 (1995).
  18. D. Josse, O. Lockridge, W. Xie, C. F. Bartels, L. M. Schopfer, and P. Masson, The active site of human paraoxonase (PON1), J. Appl. Toxicol., 21, S7-S11 (2001).
  19. B. Mackness, M. Mackness, M. Aviram, and G. Paragh (eds.). The Paraoxonases: Their Role In Disease Development And Xenobiotic Metabolism, 3-32, Springer Science & Business Media (2007).
  20. L. Briseno-Roa, J. Hill, S. Notman, D. Sellers, A. P. Smith, C. M. Timperley, J. Wetherell, N. H. Williams, G. R. Williams, A. R. Fersht, and A. D. Griffiths, Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents, J. Med. Chem., 49, 246-255 (2006).
  21. M. Goldsmith, N. Aggarwal, Y. Ashani, H. Jubran, P. J. Greisen, S. Ovchinnikov, H. Leader, D. Baker, J. L. Sussman, A. Goldenzweig, S. J. Fleishman, and D. S. Tawfik, Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers, Protein Eng., 30, 333-345 (2017).
  22. T. Imai and K. Ohura, The role of intestinal carboxylesterase in the oral absorption of prodrugs, Curr. Drug Metab., 11, 793-805 (2010).
  23. U. T. Bornscheuer, Microbial carboxylesterases: Classification, properties and application in biocatalysis, FEMS Microbiol. Rev., 26, 73-81 (2002).
  24. T. Imai, Human carboxylesterase isozymes: Catalytic properties and rational drug design, Drug Metab. Pharm., 21, 173-185 (2006).
  25. M. J. Hatfield, R. A. Umans, J. L. Hyatt, C. C. Edwards, M. Wierdl, L. Tsurkan, M. R. Taylor, and P. M. Potter, Carboxylesterases: General detoxifying enzymes, Chem. Biol. Interact., 259, 327-331 (2016).
  26. T. Satoh and M. Hosokawa, Molecular aspects of carboxylesterase isoforms in comparison with other esterases, Toxicol. Lett., 82, 439-445 (1995).
  27. A. C. Hemmert, T. C. Otto, M. Wierdl, C. C. Edwards, C. D. Fleming, M. MacDonald, J. R. Cashman, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin, Mol. Pharmacol., 77, 508-516 (2010).
  28. P. Masson and S. V. Lushchekina, Emergence of catalytic bioscavengers against organophosphorus agents, Chem. Biol. Interact., 259, 319-326 (2016).
  29. A. C. Hemmert, T. C. Otto, R. A. Chica, M. Wierdl, J. S. Edwards, S. L. Lewis, C. C. Edwards, L. Tsurkan, C. L. Cadieux, S. A. Kasten, J. R. Cashman, S. L. Mayo, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Nerve agent hydrolysis activity designed into a human drug metabolism enzyme, PLoS One, 6, e17441 (2011).
  30. P. Masson, P. L. Fortier, C. Albaret, M. T. Froment, C. F. Bartels, and O. Lockridge, Aging of di-isopropyl-phosphorylated human butyrylcholinesterase, Biochem. J., 327, 601-607 (1997).
  31. P. M. Legler, S. M. Boisvert, J. R. Compton, and C. B. Millard, Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase, Front Chem., 2, 46 (2014).
  32. F. Soto-Mancera, J. M. Arellano, and M. G. Albendin, Carboxylesterase in Sparus aurata: characterisation and sensitivity to organophosphorus pesticides and pharmaceutical products, Ecol. Indic., 109, 105603 (2020).
  33. V. V. Frolkis, V. V. Bezrukov, Y. K. Duplenko, I. V. Shchegoleva, V. G. Shevtchuk, and N. S. Verkhratsky, Acetyl- choline metabolism and cholinergic regulation of functions in aging, Gerontology, 19, 45-57 (1973).
  34. F. Wore, H. Thiermann, L. Szinicz, and P. Eyer, Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes, Biochem. Pharmacol., 68, 2237-2248 (2004).
  35. K. G. McGarry, K. E. Schill, T. P. Winters, E. E. Lemmon, C. L. Sabourin, J. A. Harvilchuck, and R. A. Moyer, Characterization of cholinesterases from multiple large animal species for medical countermeasure development against chemical warfare nerve agents, Toxicol. Sci., 174, 124-132 (2019).
  36. Z. Chen, R. Newcomb, E. Forbes, J. McKenzie, and P. Batterham, The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem. Mol. Biol., 31, 805-816 (2001).
  37. P. Menozzi, M. Shi, A. Lougarre, Z. H. Tang, and D. Fournier, Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol. Biol., 4, 4 (2004).
  38. Y. Ashani, Z. Radic, I. Tsigelny, D. C. Vellom, N. A. Pickering, D. M. Quinn, B. P. Doctor, and P. Taylor, Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono-and bisquaternary oximes, J. Biol. Chem., 270, 6370-6380 (1995).
  39. L. Wong, Z. Radic, R. J. Bruggemann, N. Hosea, H. A. Berman, and P. Taylor, Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis, Biochemistry, 39, 5750-5757 (2000).
  40. T. Kucukkilinc, R. Cochran, J. Kalisiak, E. Garcia, A. Valle, G. Amitai, Z. Radica, and P. Taylor, Investigating the structural influence of surface mutations on acetylcholinesterase inhibition by organophosphorus compounds and oxime reactivation, Chem. Biol. Interact., 187, 238-240 (2010).
  41. M. Katalinic, G. Sinko, M. N. Hrvat, T. Zorbaz, A. Bosak, and Z. Kovarik, Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations, Toxicology, 406-407, 104-113 (2018).
  42. O. Mazor, O. Cohen, C. Kronman, L. Raveh, D. Stein, A. Ordentlich, and A. Shafferman, Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase, Mol. Pharmacol., 74, 755-763 (2008).
  43. C. Kronman, O. Cohen, O. Mazor, A. Ordentlich, L. Raveh, B. Velan, and A. Shafferman, Next generation OP-bioscavengers: A circulatory long-lived 4-PEG hypolysine mutant of F338A-HuAChE with optimal pharmacokinetics and pseudo-catalytic characteristics, Chem. Biol. Interact., 187, 253-258 (2010).
  44. N. M. Hrvat, S. Zunec, P. Taylor, Z. Radic, and Z. Kovarik, HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants, Chem. Biol. Interact., 259, 148-153 (2016).
  45. Z. Kovarik, N. M. Hrvat, J. Kalisiak, M. Katalinic, R. K. Sit, T. Zorbaz, Z. Radic, V. V. Fokin, K. B. Sharpless, and P. Taylor, Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase, Toxicol. Appl. Pharmacol., 372, 40-46 (2019).
  46. J. Massoulie, J. Sussman, S. Bon, and I. Silman, Structure and function of acetylcholinesterase and butyrylcholinesterase, Brain Res., 98, 139-146 (1993).
  47. L. Raveh, J. Grunwald, D. Marcus, Y. Papier, E. Cohen, and Y. Ashani, Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity, Biochem. Pharmacol., 45, 2465-2474 (1993).
  48. V. P. Chen, Y. Gao, L. Geng, and S. Brimijoin, Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling, Proc. Natl. Acad. Sci., 114, 10960-10965 (2017).
  49. S. V. Lushchekina, B. L. Grigorenko, D. I. Morozov, I. V. Polyakov, A. V. Nemukhin, and S. D. Varfolomeev, Modeling of the mechanism of hydrolysis of succinylcholine in the active site of native and modified (Asp70Gly) human butyrylcholinesterase, Russ. Chem. Bull., 59, 55-60 (2010).
  50. K. A. Gonzalez, E. H. Viana, and R. V. Duhalt, Enzymatic detoxification of organophosphorus pesticides and related toxicants, J. Pestic. Sci., 43, 1-9 (2018).
  51. Y. Cai, S. Zhou, M. J. Stewart, F. Zheng, and C. G. Zhan, Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds, Chem. Biol. Interact., 310, 108756 (2019).
  52. B. Mackness, P. N. Durrington, and M. I. Mackness, Human serum paraoxonase, Gen. Pharmacol., 31, 329-336 (1998).
  53. M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-Parmo, and B. N. La Du, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase, J. Clin. Invest., 101, 1581-1590 (1998).
  54. P. N. Durrington, B. Mackness, and M. I. Mackness, Paraoxonase and atherosclerosis, Arter. Thromb. Vasc. Biol., 21, 473-480 (2001).
  55. R. C. Stevens, S. M. Suzuki, T. B. Cole, S. S. Park, R. J. Richter, and C. E. Furlong, Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning, Proc. Natl. Acad. Sci., 105, 12780-12784 (2008).
  56. L. G. Costa, G. Giordano, T. B. Cole, J. Marsillach, and C. E. Furlong, Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity, Toxicology, 307, 115-122 (2013).
  57. G. Kaur, A. K. Jain, and S. Singh, CYP/PON genetic variations as determinant of organophosphate pesticides toxicity, J. Genet., 96, 187-201 (2017).
  58. H. G. Davies, R. J. Richter, M. Keifer, C. A. Broomfield, J. Sowalla, and C. E. Furlong, The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin, Nat. Genet., 14, 334-336 (1996).
  59. M. W. Peterson, S. Z. Fairchild, T. C. Otto, M. Mohtashemi, D. M. Cerasoli, and W. E. Chang, VX hydrolysis by human serum paraoxonase 1: A comparison of experimental and computational results, PLoS One, 6, e20335 (2011).
  60. D. G. Mata, P. Sabnekar, C. A. Watson, P. E. Rezk, and N. Chilukuri, Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents, Chem. Biol. Interact., 259, 233-241 (2016).
  61. M. Valiyaveettil, Y. Alamneh, P. Rezk, L. Biggemann, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs, Biochem. Pharmacol., 81, 800-809 (2011).
  62. M. Valiyaveettil, Y. Alamneh, P. Rezk, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstillation inhalation exposure in guinea pigs, Toxicol. Lett., 202, 203-208 (2011).
  63. S. M. Hodgins, S. A. Kasten, J. Harrison, T. C. Otto, Z. P. Oliver, P. Rezk, T. E. Reeves, N. Chilukuri, and D. M. Cerasoli, Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection, Chem. Biol. Interact., 203, 177-180 (2013).
  64. A. Aharoni, L. Gaidukov, S. Yagur, L. Toker, I. Silman, and D. S. Tawfik, Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization, Proc. Natl. Acad. Sci., 101, 482-487 (2003).
  65. M. Harel, A. Aharoni, L. Gaidukov, B. Brumshtein, O. Khersonsky, R. Meged, H. Dvir, R. B. Ravelli, A. McCarthy, L. Toker, I. Silman, J. Sussman, and D. S. Tawfik, Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes, Nat. Struct. Biol., 11, 412-419 (2004).
  66. R. D. Gupta, M. Goldsmith, Y. Ashani, Y. Simo, G. Mullokandov, H. Bar, M. B. David, H. Leader, R. Margalit, I. Silman, J. L. Sussman, and D. S. Tawfik, Directed evolution of hydrolases for prevention of G-type nerve agent intoxication, Nat. Chem. Biol., 7, 120-125 (2011).
  67. M. Goldsmith, Y. Ashani, Y. Simo, M. B. David, H. Leader, I. Silman, J. L. Sussman, and D. S. Tawfik, Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification, Chem. Biol., 19, 456-466 (2012).
  68. F. Worek, T. Seeger, M. Goldsmith, Y. Ashani, H. Leader, J. S. Sussman, D. S. Tawfik, H. Thiermann, and T. Wille, Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro, Arch. Toxicol., 88, 1257-1266 (2014).
  69. M. Goldsmith, Y. Ashani, R. Margalit, A. Nyska, D. Mirelman, and D. S. Tawfik, A new post-intoxication treatment of paraoxon and parathion poisonings using an evolved PON1 variant and recombinant GOT1, Chem. Biol. Interact., 259, 242-251 (2016).
  70. A. Zlotnik, S. E. Gruenbaum, A. A. Artru, I. Rozet, M. Dubilet, S. Tkachov, E. Brotfain, Y. Klin, Y. Shapira, and V. I. Teichberg, The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity, J. Neurosurg. Anesthesiol., 21, 235-241 (2009).
  71. A. Ruban, B. Mohar, G. Jona, and V. I. Teichberg, Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication, J. Cerebr. Blood. F. Met., 34, 221-227 (2013).
  72. A. Ruban, I. Biton, A. Markovich, and D. Mirelman, MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures, Int. J. Mol. Sci., 16, 3226-3236 (2015).
  73. J. Cowan, C. M. Sinton, A. W. Varley, F. H. Wians, R. W. Haley, and R. S. Munford, Gene therapy to prevent organophosphate intoxication, Toxicol. Appl. Pharmacol., 173, 1-6 (2001).
  74. L. G. Costa, R. J. Richter, W. F. Li, T. Cole, M. Guizzetti, and C. E. Furlong, Paraoxonase (PON1) as a biomarker of susceptibility for organophosphate toxicity, Biomarkers, 8, 1-12 (2003).
  75. A. L. Fu, Y. X. Wang, and M. J. Sun, Naked DNA prevents soman intoxication, Biochem. Biophys. Res. Commun., 328, 901-905 (2005).
  76. D. G. Mata, P. E. Rezk, P. Sabnekar, D. M. Cerasoli, and N. Chilukuri, Investigation of evolved paraoxonase-1 variants for prevention of organophosphorous pesticide compound intoxication, J. Pharmacol. Exp. Ther., 349, 549-558 (2014).
  77. G. Amitai, L. Gaidukov, R. Adani, S. Yishay, G. Yacov, M. Kushnir, S. Teitlboim, M. Lindenbaum, P. Bel, O. Khersonsky, and D. S. Tawfik, Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase, FEBS J., 273, 1906-1919 (2006).
  78. S. D. Kirby, J. R. Norris, J. R. Smith, B. J. Bahnson, and D. M. Cerasoli, Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents, Chem. Biol. Interact., 203, 181-185 (2013).
  79. W. W. Mulbry, J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel, and J. R. Wild, Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta, Appl. Environ. Microbiol., 51, 926-930 (1986).
  80. D. P. Dumas, S. R. Caldwell, J. R. Wild, and F. M. Raushel, Purification and properties of the phosphotriesterase from Pseudomonas diminuta, J. Biol. Chem., 264, 19659-19665 (1989).
  81. E. Ghanem and F. M. Raushel, Detoxification of organophosphate nerve agents by bacterial phosphotriesterase, Toxicol. Appl. Pharmacol., 207, 459-470 (2005).
  82. C. M. Theriot and A. M. Grunden, Hydrolysis of organophosphorus compounds by microbial enzymes, Appl. Microbiol. Biotechnol., 89, 35-43 (2011).
  83. P. Masson, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., 1107-1123, Elsevier, Kentucky, USA (2015).
  84. D. P. Dumas, H. D. Durst, and W. G. Landis, Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta, Arch. Biochem. Biophys., 277, 155-159 (1990).
  85. V. K. Rastogi, J. J. Defranck, and T. C. Cheng, Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase, Biochem. Biophys. Res. Commun., 241, 294-296 (1997).
  86. A. D. Griffiths and D. S. Tawfik, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization, EMBO J., 22, 24-35 (2003).
  87. C. Roodveldt and D. S. Tawfik, Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state, Protein Eng. Des. Select., 18, 51-58 (2005).
  88. C. M. H. Cho, A. Mulchandani, and W. Chen, Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents, Appl. Environ. Microbiol., 68, 2026-2030 (2002).
  89. C. M. Hill, W. S. Li, J. B. Thoden, H. M. Holden, and F. M. Raushel, Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site, J. Am. Chem. Soc., 125, 8990-8991 (2003).
  90. I. Cherny, P. Greisen, Y. Ashani, S. D. Khare, G. Oberdorfer, H. Leader, D. Baker, and D. S. Tawfik, Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries, ACS Chem. Biol., 8, 2394-2403 (2013).
  91. P. Jacquet, J. Hiblot, D. Daude, C. Bergonzi, G. Gotthard, N. Armstrong, E. Chabriere, and M. Elias, Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase, Sci. Rep., 7, 1-15 (2017).
  92. T. Wille, K. Neumaier, M. Koller, C. Ehinger, N. Aggarwal, Y. Ashani, M. Goldsmith, J. L. Sussman, D. S. Tawfik, H. Thiermann, and F. Worek, Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection, Toxicol. Lett., 258, 198-206 (2016).
  93. F. Ely, K. S. Hadler, N. Mitic, L. R. Gahan, D. L. Ollis, N. M. Plugis, M. T. Russo, J. A. Larrabee, and G. Schenk, Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA), J. Biol. Inorg. Chem., 16, 777-787 (2011).
  94. S. B. Bird, T. D. Sutherland, C. Gresham, J. Oakeshott, C. Scott, and M. Eddleston, OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides, Toxicology, 247, 88-92 (2008).
  95. J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus, PLoS One, 7, e47028 (2012).
  96. J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Characterisation of the organophosphate hydrolase catalytic activity of SsoPox, Sci. Rep., 2, 779 (2012).
  97. M. M. Meier, C. Rajendran, C. Malisi, N. G. Fox, C. Xu, S. Schlee, D. P. Barondeau, B. Hocker, R. Sterner, and F. M. Raushel, Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template, J. Am. Chem. Soc., 135, 11670-11677 (2013).
  98. J. Bzdrenga, J. Hiblot, G. Gotthard, C. Champion, M. Elias, and E. Chabriere, SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase, BMC Research Notes, 7, 333 (2014).
  99. L. Merone, L. Mandrich, E. Porzio, M. Rossi, S. Muller, G. Reiter, F. Worek, and G. Manco, Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase, Bioresour. Technol., 101, 9204-9212 (2010).
  100. E. I. Scharff, J. Koepke, G. Fritzsch, C. Lucke, and H. Ruterjans, Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris, Structure, 9, 493-502 (2001).
  101. H. Allahyari and A. M. Latifi, Diisopropyl-fluorophosphatase as a catalytic bioscavenger, J. Appl. Biotechnol. Rep., 3, 477-482 (2016).
  102. R. Webster, E. Didier, P. Harris, N. Siegel, J. Stadler, L. Tilbury, and D. Smith, PEGylated Proteins: Evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos., 35, 9-16 (2006).
  103. M. Melzer, A. Heidenreich, F. Dorandeu, J. Gab, K. Kehe, H. Thiermann, T. Letzel, and M. M. Blum, In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase), Drug Test. Anal., 4, 262-270 (2011).
  104. D. Zhou, D. Yin, F. Xiao, and J. Hao, Expressions of senescence-associated ${\beta}$-galactosidase and senescence marker protein-30 are associated with lens epithelial cell apoptosis, Med. Sci. Monit., 21, 3728-3735 (2015).
  105. J. S. Little, C. A. Broomfield, M. K. Fox-Talbot, L. J. Boucher, B. MacIver, and D. E. Lenz, Partial characterization of an enzyme that hydrolyzes sarin, soman, tabun, and diisopropyl phosphorofluoridate (DFP), Biochem. Pharmacol., 38, 23-29 (1989).
  106. R. C. diTargiani, L. Chandrasekaran, T. Belinskaya, and A. Saxena, In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity, Chem. Biol. Interact., 187, 349-354 (2010).
  107. M. S. Choi, A. Saxena, and N. Chilukuri, A strategy for the production of soluble human senescence marker protein-30 in Escherichia coli, Biochem. Biophys. Res. Commun., 393, 509-513 (2010).
  108. T. C. Cheng, S. Harvey, and A. N. Stroup, Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina, Appl. Environ. Microbiol., 59, 3138-3140 (1993).
  109. T. C. Cheng, S. P. Harvey, and G. L. Chen, Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus neve agents and nucleotide sequence of the enzyme, Appl. Environ. Microbiol., 62, 1636-1641 (1996).
  110. S. P. Harvey, R. M. Leslie, and J. B. Frederic, Hydrolysis and enzymatic degradation of Novichok nerve agents, Heliyon, 6, e03153 (2020).
  111. C. M. Daczkowski, S. D. Pegan, and S. P. Harvey, Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on russian VX, Biochemistry, 54, 6423-6433 (2015).
  112. I. Petrikovics, Long circulating liposomes encapsulating organophosphorus acid Anhydrolase in diisopropylfluorophosphate antagonism, Toxicol. Sci., 57, 16-21 (2000).
  113. P. Li, S. Y. Moon, M. A. Guelta, L. Lin, D. A. Gomez-Gualdron, R. Q. Snurr, S. P. Harvey, J. T. Hupp, and O. K. Farha, Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis, ACS Nano, 10, 9174-9182 (2016).
  114. G. Zanaboni, K. M. Dyne, A. Rossi, V. Monafo, and G. Cetta, Prolidase deficiency: Biochemical study of erythrocyte and skin fibroblast prolidase activity in italian patients, Haematologica, 79, 13-18 (1994).
  115. L. Chandrasekaran, T. Belinskaya, and A. Saxena, In vitro characterization of organophosphorus compound hydrolysis by native and recombinant human prolidase, Toxicology in vitro, 27, 499-506 (2013).
  116. V. Aleti, G. B. Reddy, K. Parikh, P. Arun, and N. Chilukuri, Persistent and high-level expression of human liver prolidase in vivo in mice using adenovirus, Chem. Biol. Interact., 203, 191-195 (2013).
  117. P. E. Rezk, P. Zdenka, P. Sabnekar, T. Kajih, D. G. Mata, C. Wrobel, D. M. Cerasoli, and N. Chilukuri, An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents, Drug Chem. Toxicol., 38, 37-43 (2014).
  118. H. Liu, J. J. Zhang, S. J. Wang, X. E. Zhang, and N. Y. Zhou, Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3, Biochem. Biophys. Res. Commun., 334, 1107-1114 (2005).
  119. Y. J. Dong, M. Bartlam, L. Sun, Y. F. Zhou, Z. P. Zhang, C. G. Zhang, Z. Rao, and X. E. Zhang, Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3, J. Mol. Biol., 353, 655-663 (2005).
  120. T. K. Ng, L. R. Gahan, G. Schenk, and D. L. Ollis, Altering the substrate specificity of methyl parathion hydrolase with directed evolution, Arch. Biochem. Biophys., 573, 59-68 (2015).
  121. A. Ozgur and Y. Tutar, Therapeutic proteins: A to Z, Protein Pept. Lett., 20, 1365-1372 (2013).
  122. H. D. Lagasse, A. Alexaki, V. L. Simhadri, N. H. Katagiri, W. Jankowski, Z. E. Sauna, and C. Kimchi-Sarfaty, Recent advances in (therapeutic protein) drug development, F1000Res., 6, 113 (2017).
  123. J. L. Sussman and I. Silman, Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions, Curr. Opin. Struct. Biol., 2, 721-729 (1992).
  124. O. Lockridge, C. F. Bartels, T. A. Vaughan, C. K. Wong, S. E. Norton, and L. L. Johnson, Complete amino acid sequence of human serum cholinesterase, J. Biol. Chem., 262, 549-557 (1987).
  125. M. M. Benning, J. M. Kuo, F. M. Raushel, and H. M. Holden, Three-dimensional structure of phosphotriesterase: An enzyme capable of detoxifying organophosphate nerve agents, Biochemistry, 33, 15001-15007 (1994).
  126. I. Horne, T. D. Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott, Identification of an opd (Organophosphate Degradation) gene in an agrobacterium isolate, Appl. Environ. Microbiol., 68, 3371-3376 (2002).
  127. S. Chakraborti and B. J. Bahnson, Crystal structure of human senescence marker protein 30: Insights linking structural, enzymatic, and physiological functions, Biochemistry, 49, 3436-3444 (2010).
  128. N. K. Vyas, A. Nickitenko, V. K. Rastogi, S. S. Shah, and F. A. Quiocho, Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase, Biochemistry, 49, 547-559 (2010).
  129. A. Lupi, R. Tenni, A. Rossi, G. Cetta, and A. Forlino, Human prolidase and prolidase deficiency: An overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations, Amino Acids, 35, 739-752 (2008).
  130. C. Zhongli, L. Shunpeng, and F. Guoping, Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene, Appl. Environ. Microbiol., 67, 4922-4925 (2001).
  131. M. Goldsmith and Y. Ashani, Catalytic bioscavengers as countermeasures against organophosphate nerve agents, Chem. Biol. Interact., 292, 50-64 (2018).