DOI QR코드

DOI QR Code

Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds

유기인 계열 독성물질 분해를 위한 바이오스캐빈저 최신 연구 동향

  • Kim, Heejeong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
  • 김희정 (육군사관학교 물리화학과) ;
  • 정근홍 (육군사관학교 물리화학과) ;
  • 계영식 (육군사관학교 물리화학과)
  • Received : 2020.03.03
  • Accepted : 2020.03.21
  • Published : 2020.04.10

Abstract

In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.

Acknowledgement

Supported by : 육군사관학교

References

  1. I. Koplovitz, S. M. Schulz, R. F. Railer, M. Sigler, and R. B. Lee, Effect of atropine and diazepam on the efficacy of oxime treatment of nerve agent intoxication, J. Med. CBR. Def., 5, 1-15 (2007).
  2. J. Newmark, Seminars in Neurology, 24, 185-196, Thieme Medical Publishers, Inc., New York, USA (2004). https://doi.org/10.1055/s-2004-830906
  3. P. Taylor, Anticholinesterase agents, In: L. L. Brunton, B. A. Chabner, B. C. Knollmann (eds.), Goodman & Gilman's the Pharmacological Basis of Therapeutics, 239-254, McGraw-Hill, New York, USA (2011).
  4. M. Trovaslet-Leroy, L. Musilova, F. Renault, X. Brazzolotto, J. Misik, L. Novotny, M. T. Froment, E. Gillon, M. Loiodice, L. Verdier, and P. Masson, Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents, Toxicol. Lett., 206, 14-23 (2011). https://doi.org/10.1016/j.toxlet.2011.05.1041
  5. F. Nachon, X.Brazzolotto, M. Trovaslet, and P. Masson, Progress in the development of enzyme-based nerve agent bioscavengers, Chem. Biol. Interact., 206, 536-544 (2013). https://doi.org/10.1016/j.cbi.2013.06.012
  6. J. Descotes, Immunotoxicology of Drugs and Chemicals: An Experimental and Clinical Approach, 2-18, Elsevier, Amsterdam, Netherlands (2004).
  7. N. Aurbek, H. Thiermann, F. Eyer, P. Eyer, and F. Worek, Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: A kinetic analysis, Toxicology, 259, 133-139 (2009). https://doi.org/10.1016/j.tox.2009.02.014
  8. K. G. McGarry, R. F. Lalisse, R. A. Moyer, K. M. Johnson, A. M. Tallan, T. P. Winters, J. E. Taris, C. A. McElroy, E. E. Lemmon, H. S. Shafaat, Y. Fan, A. Deal, S. C. Marguet, J. A. Harvilchuck, C. M. Hadad, and D. W. Wood, A novel, modified human butyrylcholinesterase catalytically degrades the chemical warfare nerve agent, sarin, Toxicol. Sci., 174, 133-146 (2019).
  9. J. Estevez and E. Vilanova, Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: Esterases and organophosphorus compounds, Crit. Rev. Toxicol., 39, 427-448 (2009). https://doi.org/10.1080/10408440802412309
  10. W. N. Aldridge, Organophosphorus compounds: Molecular basis for their biological properties, Sci. Prog., 67, 138-139 (1981).
  11. F. Worek, N. Aurbek, T. Wille, P. Eyer, and H. Thiermann, Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: A theoretical approach, J. Enzyme Inhib., 26, 303-308 (2010).
  12. R. L. Maynard and F. W. Beswick, Clinical and Experimental Toxicology of Organophosphates and Carbamates, 373-385, Elsevier, Oxford, UK (1992).
  13. G. E. Garcia, A. J. Campbell, J. Olson, D. Moorad-Doctor, and V. I. Morthole, Novel oximes as blood-brain barrier penetrating cholinesterase reactivators, Chem. Biol. Interact., 187, 199-206 (2010). https://doi.org/10.1016/j.cbi.2010.02.033
  14. G. Mercey, T. Verdelet, G. Saint-Andre, E. Gillon, A. Wagner, R. Baati, L. Jean, F. Nachon, and P. Y. Renard, First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase, Chem. Commun., 47, 5295-5297 (2011). https://doi.org/10.1039/c1cc10787a
  15. J. Kalisiak, E. C. Ralph, and J. R. Cashman, Nonquaternary reactivators for organophosphate-inhibited cholinesterases, J. Med. Chem., 55, 465-474 (2011).
  16. M. Katalinic, N. Macek Hrvat, K. Baumann, S. Morasi Pipercic, S. Makaric, S. Tomic, O. Jovic, T. Hrenar, A. Milicevic, D. Jelic, S. Zunec, I. Primozic, and Z. Kovarik, A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers, Toxicol. Appl. Pharmacol., 310, 195-204 (2016). https://doi.org/10.1016/j.taap.2016.09.015
  17. J. G. Clement, D. G. Bailey, H. D. Madill, L. T. Tran, and J. D. Spence, The acetylcholinesterase oxime reactivator HI-6 in man: Pharmacokinetics and tolerability in combination with atropine, Biopharm. Drug Dispos., 16, 415-425 (1995). https://doi.org/10.1002/bdd.2510160506
  18. D. Josse, O. Lockridge, W. Xie, C. F. Bartels, L. M. Schopfer, and P. Masson, The active site of human paraoxonase (PON1), J. Appl. Toxicol., 21, S7-S11 (2001). https://doi.org/10.1002/jat.789
  19. B. Mackness, M. Mackness, M. Aviram, and G. Paragh (eds.). The Paraoxonases: Their Role In Disease Development And Xenobiotic Metabolism, 3-32, Springer Science & Business Media (2007).
  20. L. Briseno-Roa, J. Hill, S. Notman, D. Sellers, A. P. Smith, C. M. Timperley, J. Wetherell, N. H. Williams, G. R. Williams, A. R. Fersht, and A. D. Griffiths, Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents, J. Med. Chem., 49, 246-255 (2006). https://doi.org/10.1021/jm050518j
  21. M. Goldsmith, N. Aggarwal, Y. Ashani, H. Jubran, P. J. Greisen, S. Ovchinnikov, H. Leader, D. Baker, J. L. Sussman, A. Goldenzweig, S. J. Fleishman, and D. S. Tawfik, Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers, Protein Eng., 30, 333-345 (2017). https://doi.org/10.1093/protein/gzx003
  22. T. Imai and K. Ohura, The role of intestinal carboxylesterase in the oral absorption of prodrugs, Curr. Drug Metab., 11, 793-805 (2010). https://doi.org/10.2174/138920010794328904
  23. U. T. Bornscheuer, Microbial carboxylesterases: Classification, properties and application in biocatalysis, FEMS Microbiol. Rev., 26, 73-81 (2002). https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
  24. T. Imai, Human carboxylesterase isozymes: Catalytic properties and rational drug design, Drug Metab. Pharm., 21, 173-185 (2006). https://doi.org/10.2133/dmpk.21.173
  25. M. J. Hatfield, R. A. Umans, J. L. Hyatt, C. C. Edwards, M. Wierdl, L. Tsurkan, M. R. Taylor, and P. M. Potter, Carboxylesterases: General detoxifying enzymes, Chem. Biol. Interact., 259, 327-331 (2016). https://doi.org/10.1016/j.cbi.2016.02.011
  26. T. Satoh and M. Hosokawa, Molecular aspects of carboxylesterase isoforms in comparison with other esterases, Toxicol. Lett., 82, 439-445 (1995).
  27. A. C. Hemmert, T. C. Otto, M. Wierdl, C. C. Edwards, C. D. Fleming, M. MacDonald, J. R. Cashman, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin, Mol. Pharmacol., 77, 508-516 (2010). https://doi.org/10.1124/mol.109.062356
  28. P. Masson and S. V. Lushchekina, Emergence of catalytic bioscavengers against organophosphorus agents, Chem. Biol. Interact., 259, 319-326 (2016). https://doi.org/10.1016/j.cbi.2016.02.010
  29. A. C. Hemmert, T. C. Otto, R. A. Chica, M. Wierdl, J. S. Edwards, S. L. Lewis, C. C. Edwards, L. Tsurkan, C. L. Cadieux, S. A. Kasten, J. R. Cashman, S. L. Mayo, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Nerve agent hydrolysis activity designed into a human drug metabolism enzyme, PLoS One, 6, e17441 (2011). https://doi.org/10.1371/journal.pone.0017441
  30. P. Masson, P. L. Fortier, C. Albaret, M. T. Froment, C. F. Bartels, and O. Lockridge, Aging of di-isopropyl-phosphorylated human butyrylcholinesterase, Biochem. J., 327, 601-607 (1997). https://doi.org/10.1042/bj3270601
  31. P. M. Legler, S. M. Boisvert, J. R. Compton, and C. B. Millard, Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase, Front Chem., 2, 46 (2014).
  32. F. Soto-Mancera, J. M. Arellano, and M. G. Albendin, Carboxylesterase in Sparus aurata: characterisation and sensitivity to organophosphorus pesticides and pharmaceutical products, Ecol. Indic., 109, 105603 (2020). https://doi.org/10.1016/j.ecolind.2019.105603
  33. V. V. Frolkis, V. V. Bezrukov, Y. K. Duplenko, I. V. Shchegoleva, V. G. Shevtchuk, and N. S. Verkhratsky, Acetyl- choline metabolism and cholinergic regulation of functions in aging, Gerontology, 19, 45-57 (1973). https://doi.org/10.1159/000211959
  34. F. Wore, H. Thiermann, L. Szinicz, and P. Eyer, Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes, Biochem. Pharmacol., 68, 2237-2248 (2004). https://doi.org/10.1016/j.bcp.2004.07.038
  35. K. G. McGarry, K. E. Schill, T. P. Winters, E. E. Lemmon, C. L. Sabourin, J. A. Harvilchuck, and R. A. Moyer, Characterization of cholinesterases from multiple large animal species for medical countermeasure development against chemical warfare nerve agents, Toxicol. Sci., 174, 124-132 (2019).
  36. Z. Chen, R. Newcomb, E. Forbes, J. McKenzie, and P. Batterham, The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem. Mol. Biol., 31, 805-816 (2001). https://doi.org/10.1016/S0965-1748(00)00186-7
  37. P. Menozzi, M. Shi, A. Lougarre, Z. H. Tang, and D. Fournier, Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol. Biol., 4, 4 (2004). https://doi.org/10.1186/1471-2148-4-4
  38. Y. Ashani, Z. Radic, I. Tsigelny, D. C. Vellom, N. A. Pickering, D. M. Quinn, B. P. Doctor, and P. Taylor, Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono-and bisquaternary oximes, J. Biol. Chem., 270, 6370-6380 (1995). https://doi.org/10.1074/jbc.270.11.6370
  39. L. Wong, Z. Radic, R. J. Bruggemann, N. Hosea, H. A. Berman, and P. Taylor, Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis, Biochemistry, 39, 5750-5757 (2000). https://doi.org/10.1021/bi992906r
  40. T. Kucukkilinc, R. Cochran, J. Kalisiak, E. Garcia, A. Valle, G. Amitai, Z. Radica, and P. Taylor, Investigating the structural influence of surface mutations on acetylcholinesterase inhibition by organophosphorus compounds and oxime reactivation, Chem. Biol. Interact., 187, 238-240 (2010). https://doi.org/10.1016/j.cbi.2010.03.050
  41. M. Katalinic, G. Sinko, M. N. Hrvat, T. Zorbaz, A. Bosak, and Z. Kovarik, Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations, Toxicology, 406-407, 104-113 (2018). https://doi.org/10.1016/j.tox.2018.05.008
  42. O. Mazor, O. Cohen, C. Kronman, L. Raveh, D. Stein, A. Ordentlich, and A. Shafferman, Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase, Mol. Pharmacol., 74, 755-763 (2008). https://doi.org/10.1124/mol.108.047449
  43. C. Kronman, O. Cohen, O. Mazor, A. Ordentlich, L. Raveh, B. Velan, and A. Shafferman, Next generation OP-bioscavengers: A circulatory long-lived 4-PEG hypolysine mutant of F338A-HuAChE with optimal pharmacokinetics and pseudo-catalytic characteristics, Chem. Biol. Interact., 187, 253-258 (2010). https://doi.org/10.1016/j.cbi.2009.12.004
  44. N. M. Hrvat, S. Zunec, P. Taylor, Z. Radic, and Z. Kovarik, HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants, Chem. Biol. Interact., 259, 148-153 (2016). https://doi.org/10.1016/j.cbi.2016.04.023
  45. Z. Kovarik, N. M. Hrvat, J. Kalisiak, M. Katalinic, R. K. Sit, T. Zorbaz, Z. Radic, V. V. Fokin, K. B. Sharpless, and P. Taylor, Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase, Toxicol. Appl. Pharmacol., 372, 40-46 (2019). https://doi.org/10.1016/j.taap.2019.04.007
  46. J. Massoulie, J. Sussman, S. Bon, and I. Silman, Structure and function of acetylcholinesterase and butyrylcholinesterase, Brain Res., 98, 139-146 (1993).
  47. L. Raveh, J. Grunwald, D. Marcus, Y. Papier, E. Cohen, and Y. Ashani, Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity, Biochem. Pharmacol., 45, 2465-2474 (1993). https://doi.org/10.1016/0006-2952(93)90228-O
  48. V. P. Chen, Y. Gao, L. Geng, and S. Brimijoin, Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling, Proc. Natl. Acad. Sci., 114, 10960-10965 (2017). https://doi.org/10.1073/pnas.1706517114
  49. S. V. Lushchekina, B. L. Grigorenko, D. I. Morozov, I. V. Polyakov, A. V. Nemukhin, and S. D. Varfolomeev, Modeling of the mechanism of hydrolysis of succinylcholine in the active site of native and modified (Asp70Gly) human butyrylcholinesterase, Russ. Chem. Bull., 59, 55-60 (2010). https://doi.org/10.1007/s11172-010-0044-0
  50. K. A. Gonzalez, E. H. Viana, and R. V. Duhalt, Enzymatic detoxification of organophosphorus pesticides and related toxicants, J. Pestic. Sci., 43, 1-9 (2018).
  51. Y. Cai, S. Zhou, M. J. Stewart, F. Zheng, and C. G. Zhan, Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds, Chem. Biol. Interact., 310, 108756 (2019). https://doi.org/10.1016/j.cbi.2019.108756
  52. B. Mackness, P. N. Durrington, and M. I. Mackness, Human serum paraoxonase, Gen. Pharmacol., 31, 329-336 (1998). https://doi.org/10.1016/S0306-3623(98)00028-7
  53. M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-Parmo, and B. N. La Du, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase, J. Clin. Invest., 101, 1581-1590 (1998). https://doi.org/10.1172/JCI1649
  54. P. N. Durrington, B. Mackness, and M. I. Mackness, Paraoxonase and atherosclerosis, Arter. Thromb. Vasc. Biol., 21, 473-480 (2001). https://doi.org/10.1161/01.ATV.21.4.473
  55. R. C. Stevens, S. M. Suzuki, T. B. Cole, S. S. Park, R. J. Richter, and C. E. Furlong, Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning, Proc. Natl. Acad. Sci., 105, 12780-12784 (2008). https://doi.org/10.1073/pnas.0805865105
  56. L. G. Costa, G. Giordano, T. B. Cole, J. Marsillach, and C. E. Furlong, Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity, Toxicology, 307, 115-122 (2013). https://doi.org/10.1016/j.tox.2012.07.011
  57. G. Kaur, A. K. Jain, and S. Singh, CYP/PON genetic variations as determinant of organophosphate pesticides toxicity, J. Genet., 96, 187-201 (2017). https://doi.org/10.1007/s12041-017-0741-7
  58. H. G. Davies, R. J. Richter, M. Keifer, C. A. Broomfield, J. Sowalla, and C. E. Furlong, The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin, Nat. Genet., 14, 334-336 (1996). https://doi.org/10.1038/ng1196-334
  59. M. W. Peterson, S. Z. Fairchild, T. C. Otto, M. Mohtashemi, D. M. Cerasoli, and W. E. Chang, VX hydrolysis by human serum paraoxonase 1: A comparison of experimental and computational results, PLoS One, 6, e20335 (2011). https://doi.org/10.1371/journal.pone.0020335
  60. D. G. Mata, P. Sabnekar, C. A. Watson, P. E. Rezk, and N. Chilukuri, Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents, Chem. Biol. Interact., 259, 233-241 (2016). https://doi.org/10.1016/j.cbi.2016.04.013
  61. M. Valiyaveettil, Y. Alamneh, P. Rezk, L. Biggemann, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs, Biochem. Pharmacol., 81, 800-809 (2011). https://doi.org/10.1016/j.bcp.2010.12.024
  62. M. Valiyaveettil, Y. Alamneh, P. Rezk, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstillation inhalation exposure in guinea pigs, Toxicol. Lett., 202, 203-208 (2011). https://doi.org/10.1016/j.toxlet.2011.02.007
  63. S. M. Hodgins, S. A. Kasten, J. Harrison, T. C. Otto, Z. P. Oliver, P. Rezk, T. E. Reeves, N. Chilukuri, and D. M. Cerasoli, Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection, Chem. Biol. Interact., 203, 177-180 (2013). https://doi.org/10.1016/j.cbi.2012.10.015
  64. A. Aharoni, L. Gaidukov, S. Yagur, L. Toker, I. Silman, and D. S. Tawfik, Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization, Proc. Natl. Acad. Sci., 101, 482-487 (2003).
  65. M. Harel, A. Aharoni, L. Gaidukov, B. Brumshtein, O. Khersonsky, R. Meged, H. Dvir, R. B. Ravelli, A. McCarthy, L. Toker, I. Silman, J. Sussman, and D. S. Tawfik, Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes, Nat. Struct. Biol., 11, 412-419 (2004). https://doi.org/10.1038/nsmb767
  66. R. D. Gupta, M. Goldsmith, Y. Ashani, Y. Simo, G. Mullokandov, H. Bar, M. B. David, H. Leader, R. Margalit, I. Silman, J. L. Sussman, and D. S. Tawfik, Directed evolution of hydrolases for prevention of G-type nerve agent intoxication, Nat. Chem. Biol., 7, 120-125 (2011). https://doi.org/10.1038/nchembio.510
  67. M. Goldsmith, Y. Ashani, Y. Simo, M. B. David, H. Leader, I. Silman, J. L. Sussman, and D. S. Tawfik, Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification, Chem. Biol., 19, 456-466 (2012). https://doi.org/10.1016/j.chembiol.2012.01.017
  68. F. Worek, T. Seeger, M. Goldsmith, Y. Ashani, H. Leader, J. S. Sussman, D. S. Tawfik, H. Thiermann, and T. Wille, Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro, Arch. Toxicol., 88, 1257-1266 (2014). https://doi.org/10.1007/s00204-014-1204-z
  69. M. Goldsmith, Y. Ashani, R. Margalit, A. Nyska, D. Mirelman, and D. S. Tawfik, A new post-intoxication treatment of paraoxon and parathion poisonings using an evolved PON1 variant and recombinant GOT1, Chem. Biol. Interact., 259, 242-251 (2016). https://doi.org/10.1016/j.cbi.2016.05.034
  70. A. Zlotnik, S. E. Gruenbaum, A. A. Artru, I. Rozet, M. Dubilet, S. Tkachov, E. Brotfain, Y. Klin, Y. Shapira, and V. I. Teichberg, The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity, J. Neurosurg. Anesthesiol., 21, 235-241 (2009). https://doi.org/10.1097/ANA.0b013e3181a2bf0b
  71. A. Ruban, B. Mohar, G. Jona, and V. I. Teichberg, Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication, J. Cerebr. Blood. F. Met., 34, 221-227 (2013).
  72. A. Ruban, I. Biton, A. Markovich, and D. Mirelman, MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures, Int. J. Mol. Sci., 16, 3226-3236 (2015). https://doi.org/10.3390/ijms16023226
  73. J. Cowan, C. M. Sinton, A. W. Varley, F. H. Wians, R. W. Haley, and R. S. Munford, Gene therapy to prevent organophosphate intoxication, Toxicol. Appl. Pharmacol., 173, 1-6 (2001). https://doi.org/10.1006/taap.2001.9169
  74. L. G. Costa, R. J. Richter, W. F. Li, T. Cole, M. Guizzetti, and C. E. Furlong, Paraoxonase (PON1) as a biomarker of susceptibility for organophosphate toxicity, Biomarkers, 8, 1-12 (2003). https://doi.org/10.1080/13547500210148315
  75. A. L. Fu, Y. X. Wang, and M. J. Sun, Naked DNA prevents soman intoxication, Biochem. Biophys. Res. Commun., 328, 901-905 (2005). https://doi.org/10.1016/j.bbrc.2004.12.194
  76. D. G. Mata, P. E. Rezk, P. Sabnekar, D. M. Cerasoli, and N. Chilukuri, Investigation of evolved paraoxonase-1 variants for prevention of organophosphorous pesticide compound intoxication, J. Pharmacol. Exp. Ther., 349, 549-558 (2014). https://doi.org/10.1124/jpet.114.213645
  77. G. Amitai, L. Gaidukov, R. Adani, S. Yishay, G. Yacov, M. Kushnir, S. Teitlboim, M. Lindenbaum, P. Bel, O. Khersonsky, and D. S. Tawfik, Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase, FEBS J., 273, 1906-1919 (2006). https://doi.org/10.1111/j.1742-4658.2006.05198.x
  78. S. D. Kirby, J. R. Norris, J. R. Smith, B. J. Bahnson, and D. M. Cerasoli, Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents, Chem. Biol. Interact., 203, 181-185 (2013). https://doi.org/10.1016/j.cbi.2012.10.023
  79. W. W. Mulbry, J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel, and J. R. Wild, Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta, Appl. Environ. Microbiol., 51, 926-930 (1986). https://doi.org/10.1128/AEM.51.5.926-930.1986
  80. D. P. Dumas, S. R. Caldwell, J. R. Wild, and F. M. Raushel, Purification and properties of the phosphotriesterase from Pseudomonas diminuta, J. Biol. Chem., 264, 19659-19665 (1989).
  81. E. Ghanem and F. M. Raushel, Detoxification of organophosphate nerve agents by bacterial phosphotriesterase, Toxicol. Appl. Pharmacol., 207, 459-470 (2005). https://doi.org/10.1016/j.taap.2005.02.025
  82. C. M. Theriot and A. M. Grunden, Hydrolysis of organophosphorus compounds by microbial enzymes, Appl. Microbiol. Biotechnol., 89, 35-43 (2011). https://doi.org/10.1007/s00253-010-2807-9
  83. P. Masson, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., 1107-1123, Elsevier, Kentucky, USA (2015).
  84. D. P. Dumas, H. D. Durst, and W. G. Landis, Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta, Arch. Biochem. Biophys., 277, 155-159 (1990). https://doi.org/10.1016/0003-9861(90)90564-F
  85. V. K. Rastogi, J. J. Defranck, and T. C. Cheng, Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase, Biochem. Biophys. Res. Commun., 241, 294-296 (1997). https://doi.org/10.1006/bbrc.1997.7569
  86. A. D. Griffiths and D. S. Tawfik, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization, EMBO J., 22, 24-35 (2003). https://doi.org/10.1093/emboj/cdg014
  87. C. Roodveldt and D. S. Tawfik, Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state, Protein Eng. Des. Select., 18, 51-58 (2005). https://doi.org/10.1093/protein/gzi005
  88. C. M. H. Cho, A. Mulchandani, and W. Chen, Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents, Appl. Environ. Microbiol., 68, 2026-2030 (2002). https://doi.org/10.1128/AEM.68.4.2026-2030.2002
  89. C. M. Hill, W. S. Li, J. B. Thoden, H. M. Holden, and F. M. Raushel, Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site, J. Am. Chem. Soc., 125, 8990-8991 (2003). https://doi.org/10.1021/ja0358798
  90. I. Cherny, P. Greisen, Y. Ashani, S. D. Khare, G. Oberdorfer, H. Leader, D. Baker, and D. S. Tawfik, Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries, ACS Chem. Biol., 8, 2394-2403 (2013). https://doi.org/10.1021/cb4004892
  91. P. Jacquet, J. Hiblot, D. Daude, C. Bergonzi, G. Gotthard, N. Armstrong, E. Chabriere, and M. Elias, Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase, Sci. Rep., 7, 1-15 (2017). https://doi.org/10.1038/s41598-016-0028-x
  92. T. Wille, K. Neumaier, M. Koller, C. Ehinger, N. Aggarwal, Y. Ashani, M. Goldsmith, J. L. Sussman, D. S. Tawfik, H. Thiermann, and F. Worek, Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection, Toxicol. Lett., 258, 198-206 (2016). https://doi.org/10.1016/j.toxlet.2016.07.004
  93. F. Ely, K. S. Hadler, N. Mitic, L. R. Gahan, D. L. Ollis, N. M. Plugis, M. T. Russo, J. A. Larrabee, and G. Schenk, Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA), J. Biol. Inorg. Chem., 16, 777-787 (2011). https://doi.org/10.1007/s00775-011-0779-6
  94. S. B. Bird, T. D. Sutherland, C. Gresham, J. Oakeshott, C. Scott, and M. Eddleston, OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides, Toxicology, 247, 88-92 (2008). https://doi.org/10.1016/j.tox.2008.02.005
  95. J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus, PLoS One, 7, e47028 (2012). https://doi.org/10.1371/journal.pone.0047028
  96. J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Characterisation of the organophosphate hydrolase catalytic activity of SsoPox, Sci. Rep., 2, 779 (2012). https://doi.org/10.1038/srep00779
  97. M. M. Meier, C. Rajendran, C. Malisi, N. G. Fox, C. Xu, S. Schlee, D. P. Barondeau, B. Hocker, R. Sterner, and F. M. Raushel, Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template, J. Am. Chem. Soc., 135, 11670-11677 (2013). https://doi.org/10.1021/ja405911h
  98. J. Bzdrenga, J. Hiblot, G. Gotthard, C. Champion, M. Elias, and E. Chabriere, SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase, BMC Research Notes, 7, 333 (2014). https://doi.org/10.1186/1756-0500-7-333
  99. L. Merone, L. Mandrich, E. Porzio, M. Rossi, S. Muller, G. Reiter, F. Worek, and G. Manco, Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase, Bioresour. Technol., 101, 9204-9212 (2010). https://doi.org/10.1016/j.biortech.2010.06.102
  100. E. I. Scharff, J. Koepke, G. Fritzsch, C. Lucke, and H. Ruterjans, Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris, Structure, 9, 493-502 (2001). https://doi.org/10.1016/S0969-2126(01)00610-4
  101. H. Allahyari and A. M. Latifi, Diisopropyl-fluorophosphatase as a catalytic bioscavenger, J. Appl. Biotechnol. Rep., 3, 477-482 (2016).
  102. R. Webster, E. Didier, P. Harris, N. Siegel, J. Stadler, L. Tilbury, and D. Smith, PEGylated Proteins: Evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos., 35, 9-16 (2006).
  103. M. Melzer, A. Heidenreich, F. Dorandeu, J. Gab, K. Kehe, H. Thiermann, T. Letzel, and M. M. Blum, In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase), Drug Test. Anal., 4, 262-270 (2011).
  104. D. Zhou, D. Yin, F. Xiao, and J. Hao, Expressions of senescence-associated ${\beta}$-galactosidase and senescence marker protein-30 are associated with lens epithelial cell apoptosis, Med. Sci. Monit., 21, 3728-3735 (2015). https://doi.org/10.12659/MSM.895596
  105. J. S. Little, C. A. Broomfield, M. K. Fox-Talbot, L. J. Boucher, B. MacIver, and D. E. Lenz, Partial characterization of an enzyme that hydrolyzes sarin, soman, tabun, and diisopropyl phosphorofluoridate (DFP), Biochem. Pharmacol., 38, 23-29 (1989). https://doi.org/10.1016/0006-2952(89)90144-5
  106. R. C. diTargiani, L. Chandrasekaran, T. Belinskaya, and A. Saxena, In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity, Chem. Biol. Interact., 187, 349-354 (2010). https://doi.org/10.1016/j.cbi.2010.02.021
  107. M. S. Choi, A. Saxena, and N. Chilukuri, A strategy for the production of soluble human senescence marker protein-30 in Escherichia coli, Biochem. Biophys. Res. Commun., 393, 509-513 (2010). https://doi.org/10.1016/j.bbrc.2010.02.036
  108. T. C. Cheng, S. Harvey, and A. N. Stroup, Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina, Appl. Environ. Microbiol., 59, 3138-3140 (1993). https://doi.org/10.1128/AEM.59.9.3138-3140.1993
  109. T. C. Cheng, S. P. Harvey, and G. L. Chen, Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus neve agents and nucleotide sequence of the enzyme, Appl. Environ. Microbiol., 62, 1636-1641 (1996). https://doi.org/10.1128/AEM.62.5.1636-1641.1996
  110. S. P. Harvey, R. M. Leslie, and J. B. Frederic, Hydrolysis and enzymatic degradation of Novichok nerve agents, Heliyon, 6, e03153 (2020). https://doi.org/10.1016/j.heliyon.2019.e03153
  111. C. M. Daczkowski, S. D. Pegan, and S. P. Harvey, Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on russian VX, Biochemistry, 54, 6423-6433 (2015). https://doi.org/10.1021/acs.biochem.5b00624
  112. I. Petrikovics, Long circulating liposomes encapsulating organophosphorus acid Anhydrolase in diisopropylfluorophosphate antagonism, Toxicol. Sci., 57, 16-21 (2000). https://doi.org/10.1093/toxsci/57.1.16
  113. P. Li, S. Y. Moon, M. A. Guelta, L. Lin, D. A. Gomez-Gualdron, R. Q. Snurr, S. P. Harvey, J. T. Hupp, and O. K. Farha, Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis, ACS Nano, 10, 9174-9182 (2016). https://doi.org/10.1021/acsnano.6b04996
  114. G. Zanaboni, K. M. Dyne, A. Rossi, V. Monafo, and G. Cetta, Prolidase deficiency: Biochemical study of erythrocyte and skin fibroblast prolidase activity in italian patients, Haematologica, 79, 13-18 (1994).
  115. L. Chandrasekaran, T. Belinskaya, and A. Saxena, In vitro characterization of organophosphorus compound hydrolysis by native and recombinant human prolidase, Toxicology in vitro, 27, 499-506 (2013). https://doi.org/10.1016/j.tiv.2012.05.012
  116. V. Aleti, G. B. Reddy, K. Parikh, P. Arun, and N. Chilukuri, Persistent and high-level expression of human liver prolidase in vivo in mice using adenovirus, Chem. Biol. Interact., 203, 191-195 (2013). https://doi.org/10.1016/j.cbi.2012.08.021
  117. P. E. Rezk, P. Zdenka, P. Sabnekar, T. Kajih, D. G. Mata, C. Wrobel, D. M. Cerasoli, and N. Chilukuri, An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents, Drug Chem. Toxicol., 38, 37-43 (2014).
  118. H. Liu, J. J. Zhang, S. J. Wang, X. E. Zhang, and N. Y. Zhou, Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3, Biochem. Biophys. Res. Commun., 334, 1107-1114 (2005). https://doi.org/10.1016/j.bbrc.2005.07.006
  119. Y. J. Dong, M. Bartlam, L. Sun, Y. F. Zhou, Z. P. Zhang, C. G. Zhang, Z. Rao, and X. E. Zhang, Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3, J. Mol. Biol., 353, 655-663 (2005). https://doi.org/10.1016/j.jmb.2005.08.057
  120. T. K. Ng, L. R. Gahan, G. Schenk, and D. L. Ollis, Altering the substrate specificity of methyl parathion hydrolase with directed evolution, Arch. Biochem. Biophys., 573, 59-68 (2015). https://doi.org/10.1016/j.abb.2015.03.012
  121. A. Ozgur and Y. Tutar, Therapeutic proteins: A to Z, Protein Pept. Lett., 20, 1365-1372 (2013). https://doi.org/10.2174/092986652012131112125148
  122. H. D. Lagasse, A. Alexaki, V. L. Simhadri, N. H. Katagiri, W. Jankowski, Z. E. Sauna, and C. Kimchi-Sarfaty, Recent advances in (therapeutic protein) drug development, F1000Res., 6, 113 (2017). https://doi.org/10.12688/f1000research.9970.1
  123. J. L. Sussman and I. Silman, Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions, Curr. Opin. Struct. Biol., 2, 721-729 (1992). https://doi.org/10.1016/0959-440X(92)90207-N
  124. O. Lockridge, C. F. Bartels, T. A. Vaughan, C. K. Wong, S. E. Norton, and L. L. Johnson, Complete amino acid sequence of human serum cholinesterase, J. Biol. Chem., 262, 549-557 (1987).
  125. M. M. Benning, J. M. Kuo, F. M. Raushel, and H. M. Holden, Three-dimensional structure of phosphotriesterase: An enzyme capable of detoxifying organophosphate nerve agents, Biochemistry, 33, 15001-15007 (1994). https://doi.org/10.1021/bi00254a008
  126. I. Horne, T. D. Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott, Identification of an opd (Organophosphate Degradation) gene in an agrobacterium isolate, Appl. Environ. Microbiol., 68, 3371-3376 (2002). https://doi.org/10.1128/AEM.68.7.3371-3376.2002
  127. S. Chakraborti and B. J. Bahnson, Crystal structure of human senescence marker protein 30: Insights linking structural, enzymatic, and physiological functions, Biochemistry, 49, 3436-3444 (2010). https://doi.org/10.1021/bi9022297
  128. N. K. Vyas, A. Nickitenko, V. K. Rastogi, S. S. Shah, and F. A. Quiocho, Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase, Biochemistry, 49, 547-559 (2010). https://doi.org/10.1021/bi9011989
  129. A. Lupi, R. Tenni, A. Rossi, G. Cetta, and A. Forlino, Human prolidase and prolidase deficiency: An overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations, Amino Acids, 35, 739-752 (2008). https://doi.org/10.1007/s00726-008-0055-4
  130. C. Zhongli, L. Shunpeng, and F. Guoping, Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene, Appl. Environ. Microbiol., 67, 4922-4925 (2001). https://doi.org/10.1128/AEM.67.10.4922-4925.2001
  131. M. Goldsmith and Y. Ashani, Catalytic bioscavengers as countermeasures against organophosphate nerve agents, Chem. Biol. Interact., 292, 50-64 (2018). https://doi.org/10.1016/j.cbi.2018.07.006