Inhibitory Effect of Probenecid on Osteoclast Formation via JNK, ROS and COX-2

  • Cheng, Mi Hyun (Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University) ;
  • Kim, Sung-Jin (Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University)
  • Received : 2019.03.13
  • Accepted : 2019.08.09
  • Published : 2019.12.30


Probenecid is a representative drug used in the treatment of gout. A recent study showed that probenecid effectively inhibits oxidative stress in neural cells. In the present study, we investigated whether probenecid can affect osteoclast formation through the inhibition of reactive oxygen species (ROS) formation in RAW264.7 cells. Lipopolysaccharide (LPS)-induced ROS levels were dose-dependently reduced by probenecid. Fluorescence microscopy analysis clearly showed that probenecid inhibits the generation of ROS. Western blot analysis indicated that probenecid affects two downstream signaling molecules of ROS, cyclooxygenase 2 (COX-2) and c-Jun N-terminal kinase (JNK). These results indicate that probenecid inhibits ROS generation and exerts antiosteoclastogenic activity by inhibiting the COX-2 and JNK pathways. These results suggest that probenecid could potentially be used as a therapeutic agent to prevent bone resorption.


  1. Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B. and Rhee, S. G. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221.
  2. Beachwood, E. C., Berndt, W. O. and Mudge, G. H. (1964) Stop-flow analysis of tubular transport of uric acid in rabbits. Am. J. Physiol. 207, 1265-1272.
  3. Bishop, C. and Pfaff, W. (1955) Immediate uricosuric effect of probenecid in normal humans. Proc. Soc. Exp. Biol. Med. 88, 346-348.
  4. Boger, W. P. and Strickland, S. C. (1955) Probenecid (benemid); Its uses and side-effects in 2,502 patients. AMA Arch. Intern. Med. 95, 83-92.
  5. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342.
  6. Chandra, J., Samali, A. and Orrenius, S. (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323-333.
  7. Chen, L., Liu, L., Yin, J., Luo, Y. and Huang, S. (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem. Cell Biol. 41, 1284-1295
  8. Chen, G., Xu, Q., Dai, M. and Liu, X. (2019) Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-kB and JNK signaling pathways. Biochem. Biophys. Res. Commun. 509, 329-334
  9. Darnay, B. G., Ni, J., Moore, P. A. and Aggarwal, B. B. (1999) Activation of NK-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274, 7724-7777.
  10. Du, L., Empey, P. E., Ji, J., Chao, H., Kochanek, P. M., Bayir, H. and Clark, R. S. (2016) Probenecid and N-Acetylcysteine prevent loss of intracellular glutathione and inhibit neuronal death after mechanical stretch injury in vitro. J. Neurotrauma 33, 1913-1917.
  11. Forman, H. J., Fukuto, J. M. and Torres, M. (2004) Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, 246-256.
  12. Fraser, J. H., Helfrich, M. H., Wallace, H. M. and Ralston, S. H. (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19, 223-226.
  13. Garrett, I. R., Boyce, B. F., Oreffo, R. O., Bonewald, L., Poser, J. and Mundy, G. R. (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro in vivo. J. Clin. Invest. 85, 632-639.
  14. Geng, D. G., Zhu, X. S., Mao, H. Q., Meng, B., Chen, L., Yang, H. L. and Xu, Y. Z. (2011) Protection against titanium particle-induced osteoclastogenesis by cyclooxygenase-2 selective inhibitor. J. Biomed. Mater. Res. 99, 516-522
  15. Greene, E. L., Velarde, V. and Jaffa, A. A. (2000) Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension 35, 942-947.
  16. Gutman, A. B. (1951) Some recent advances in the study of uric acid metabolism and gout. Bull. N. Y. Acad. Med. 27, 144-164
  17. Hall, T. J., Schaeublin, M., Jeker, H., Fuller, K. and Chambers, T. J. (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 207, 280-287.
  18. Hou, G. Q., Guo, C., Song, G. H., Fang, N., Fan, W. J., Chen, X. D., Yuan, L. and Wang, Z. Q. (2013) Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int. J. Mol. Med. 32, 503-510.
  19. Hwang, J. S., Ham, S. A., Yoo, T., Lee, W. J., Paek, K. S., Kim, J. H., Lee, C. H. and Seo, H. G. (2016) Upregulation of MKP-7 in response to rosiglitazone treatmentameliorates lipopolysaccharideinduced destabilization of SIRT1 byinactivating JNK. Pharmacol. Res. 114, 47-55.
  20. Jang, H. J. and Kim, S. J. (2013) Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells. J. Recept. Signal Transduct. Res. 33, 387-391.
  21. Lee, N. K., Choi, Y. G., Baik, J. Y., Han, S. Y., Jeong, D. W., Bae, Y. S., Kim, N. and Lee, S. Y. (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859.
  22. Lin, Y. C., Huang, Y. C., Chen, S. C., Liaw, C. C., Kuo, S. C., Huang, L. J. and Gean, P. W. (2009) Neuroprotective effects of Ugonin K on hydrogen peroxide-induced cell death in human neuroblastoma SH-SY5Y cells. Neurochem. Res. 34, 923-930.
  23. Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000) Involvement of p38 mitogenactivated protein kinase signalinf pathway in osteoclastogenesis mediated by receptor activator of NFkappa B ligand (RANKL). J. Biol. Chem. 275, 31155-31161.
  24. Mizutani, H., Ishihara, Y., Izawa, A., Fujihara, Y., Kobayashi, S., Gotou, H., Okabe, E., Takeda, H., Ozawa, Y., Kamiya, Y., Kamei, H., Kikuchi, T., Yamamoto, G., Mitani, A., Nishihara, T. and Noguchi, T. (2013) Lipopolysaccharide of Aggregatibacter actinomycetem-comitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonist-deficient mice. J. Periodont. Res. 48, 748-756.
  25. Moller, J. V. (1965) The tubular site of urate transport in the rabbit kidney, and the effect of probenecid on urate secretion. Acta Pharmacol. Toxicol. (Copenh.) 23, 329-336.
  26. Oka, Y., Iwai, S., Amano, H., Irie, Y., Yatomi, K., Ryu, K., Yamada, S., Inagaki, K. and Oguchi, K. (2012) Tea polyphenols inhibit rat osteoclsat formation and differentiation. J. Pharmacol. Sci. 118, 55-64.
  27. Oldenburg, I., Qin, Q., Krieg, T., Yang, X. M., Philipp, S., Critz, S. D., Cohen, M. V. and Downey, J. M. (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 286, H468-H476.
  28. Park, J. B. and Kim, S. J. (2011) Anti-hypertensive effects of probenecid via inhibition of the a-adrenergic receptor. Pharmacol. Rep. 63, 1145-1150
  29. Ruffels, J., Griffin, M. and Dickenson, J. M. (2004) Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role of ERK1/2 in H2$O_2$-induced cell death. Eur. J. Pharmacol. 483, 163-173.
  30. Schapoval, E. E., Vargas, M. R., Chaves, C. G., Bridi, R., Zuanazzi, J. A. and Henriques, A. T. (1998) Antiinflammatory and antinociceptive activities of extracts and isolated compounds from Stachytarpheta cayennensis. J. Ethnopharmacol. 60, 53-59.
  31. Sirota, J. H., Yu, T. F. and Gutman, A. B. (1952) Effect of benemid (p-[di-n-propylsulfamyl]-benzoic acid) on urate clearance and other discrete renal functions in gouty subjects. J. Clin. Invest. 31, 692-701.
  32. Steinbeck, M. J., Appel, W. H., Jr., Verhoeven, A. J. and Karnovsky, M. J. (1994) NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J. Cell Biol. 126, 765-772.
  33. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.
  34. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of $H_2O_2$ for platelet-derived growth factor signal tranduction. Science 270, 296-299.
  35. Talbott, J. H. (1951) Clinical and metabolic effects of benemid in gout. Bull. Rheum. Dis. 2, 1-2.
  36. Tang, T., Scambler, T. E., Smallie, T., Cunliffe, H. E., Ross, E. A., Rosner, D. R., O'Neil, J. D. and Clark, A. R. (2017) Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci. Rep. 7, 4350.
  37. Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649.
  38. Thannickal, V. J. and Fanburg, B. L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005-L1028.
  39. Vietinghoff, G., Hilscher, E., Paegelow, I. and Reissmann, S. (2003) Effect of bradykinin analogues on the B1 receptor of rat ileum. Peptides 24, 931-935.
  40. Wu, H., Hu, B., Zhou, X., Zhou, C., Meng, J., Yang, Y., Zhao, X., Shi, Z. and Yan, S. (2018) Artemether attenuates LPS-inducedinflammatory bone loss by inhibiting osteoclastogenesis andbone resorption via suppression of MAPK signaling pathway. Cell Death Dis. 9, 498.
  41. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 95, 3597-3602.
  42. Zhang, L., Yu, H., Sun, Y., Lin, X., Chen, B., Tan, C., Cao, G. and Wang, Z. (2007) Protective effects of salodroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564, 18-25.
  43. Zhang, X., Li, X., Fang, J., Hou, X., Fang, H., Guo, F., Li, F., Chen, A. and Huang, S. (2018) (2R,3R)Dihydromyricetin inhibits osteoclastogenesis and bone loss through scavenging LPS-induced oxidative stress and NF-${\kappa}B$ and MAPKs pathways activating. J. Cell. Biochem. 119, 8981-8995.
  44. Zhang, Y. H., Heulsmann, A., Tondravi, M. M., Mukherjee, A. and Abu-Amer, Y. (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276, 563-568.
  45. Zhuang, S., Yan, Y., Daubert, R. A., Han, J. and Schnellmann, R. G. (2007) ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Renal Physiol. 292, 440-447.