Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Received : 2019.05.17
  • Accepted : 2019.08.12
  • Published : 2019.12.30


Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.


Supported by : Daegu Catholic University


  1. Baek, S., Kutchukian, P. S., Verdine, G. L., Huber, R., Holak, T. A., Lee, K. W. and Popowicz, G. M. (2012) Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134, 103-106.
  2. Beer, A. J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M. E., Wester, H. J., Weber, W. A. and Schwaiger, M. (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333-1341.
  3. Bertoldo, D., Khan, M. M., Dessen, P., Held, W., Huelsken, J. and Heinis, C. (2016) Phage selection of peptide macrocycles against beta-catenin to interfere with Wnt signaling. ChemMedChem 11, 834-839.
  4. Cai, M., Stankova, M., Muthu, D., Mayorov, A., Yang, Z., Trivedi, D., Cabello, C. and Hruby, V. J. (2013) An unusual conformation of gamma-melanocyte-stimulating hormone analogues leads to a selective human melanocortin 1 receptor antagonist for targeting melanoma cells. Biochemistry 52, 752-764.
  5. Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T. and Taunton, J. (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 4, e10222.
  6. Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K. H., Olson, K. A., Kesavan, K., Gangurde, P., Mukherjee, A., Baker, T., Darlak, K., Elkin, C., Filipovic, Z., Qureshi, F. Z., Cai, H., Berry, P., Feyfant, E., Shi, X. E., Horstick, J., Annis, D. A., Manning, A. M., Fotouhi, N., Nash, H., Vassilev, L. T. and Sawyer, T. K. (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110, E3445-E3454.
  7. Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. and Craik, D. J. (2010) Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665-672.
  8. Edman, P. (1959) Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28, 69-96.
  9. El-Mowafi, S. A., Alumasa, J. N., Ades, S. E. and Keiler, K. C. (2014) Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob. Agents Chemother. 58, 5500-5509.
  10. Fairlie, D. P. and Dantas de Araujo, A. (2016) Review stapling peptides using cysteine crosslinking. Biopolymers 106, 843-852.
  11. Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D. and Ruoslahti, E. (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Aspcontaining synthetic peptides. J. Cell Biol. 106, 925-930.
  12. Heinis, C. (2011) Bicyclic peptide antagonists derived from genetically encoded combinatorial libraries. Chimia (Aarau) 65, 677-679.
  13. Horton, D. A., Bourne, G. T. and Smythe, M. L. (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des. 16, 415-430.
  14. Jagtap, P. K., Garg, D., Kapp, T. G., Will, C. L., Demmer, O., Luhrmann, R., Kessler, H. and Sattler, M. (2016) Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190-10197.
  15. Joo, S. H. (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 20, 19-26.
  16. Koivunen, E., Arap, W., Valtanen, H., Rainisalo, A., Medina, O. P., Heikkila, P., Kantor, C., Gahmberg, C. G., Salo, T., Konttinen, Y. T., Sorsa, T., Ruoslahti, E. and Pasqualini, R. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768-774.
  17. Kwon, Y. and Kodadek, T. (2007) Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol. 14, 671-677.
  18. Lalonde, M. S., Lobritz, M. A., Ratcliff, A., Chamanian, M., Athanassiou, Z., Tyagi, M., Wong, J., Robinson, J. A., Karn, J., Varani, G. and Arts, E. J. (2011) Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog. 7, e1002038.
  19. Lauber, T., Neudecker, P., Rosch, P. and Marx, U. C. (2003) Solution structure of human proguanylin: the role of a hormone prosequence. J. Biol. Chem. 278, 24118-24124.
  20. Lian, W., Jiang, B., Qian, Z. and Pei, D. (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J. Am. Chem. Soc. 136, 9830-9833.
  21. Lim, S. P., Wang, Q. Y., Noble, C. G., Chen, Y. L., Dong, H., Zou, B., Yokokawa, F., Nilar, S., Smith, P., Beer, D., Lescar, J. and Shi, P. Y. (2013) Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 100, 500-519.
  22. Lin, K. H., Ali, A., Rusere, L., Soumana, D. I., Kurt Yilmaz, N. and Schiffer, C. A. (2017) Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol. 91, e00045-17.
  23. Liu, Q., Pan, D., Cheng, C., Zhang, A., Ma, C., Wang, L., Zhang, D., Liu, H., Jiang, H., Wang, T., Xu, Y., Yang, R., Chen, F., Yang, M. and Zuo, C. (2015) Targeting of MMP2 activity in malignant tumors with a 68Ga-labeled gelatinase inhibitor cyclic peptide. Nucl. Med. Biol. 42, 939-944.
  24. Liu, S., Edwards, D. S., Ziegler, M. C., Harris, A. R., Hemingway, S. J. and Barrett, J. A. (2001) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug. Chem. 12, 624-629.
  25. Liu, T., Liu, Y., Kao, H. Y. and Pei, D. (2010) Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1. J. Med. Chem. 53, 2494-2501.
  26. Male, A. L., Forafonov, F., Cuda, F., Zhang, G., Zheng, S., Oyston, P. C. F., Chen, P. R., Williamson, E. D. and Tavassoli, A. (2017) Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104.
  27. Manna, A. K., Kumar, A., Ray, U., Das, S., Basu, G. and Roy, S. (2013) A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Res. 97, 223-226.
  28. Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A. M., Xie, J., Allen, D., Hamilton, A., Larkin, J. R., Perez-Balderas, F., Smart, S. C., Muschel, R. J., Chen, X., Sibson, N. R. and Choudhury, R. P. (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5, 515-529.
  29. Millward, S. W., Fiacco, S., Austin, R. J. and Roberts, R. W. (2007) Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem. Biol. 2, 625-634.
  30. Muppidi, A., Doi, K., Ramil, C. P., Wang, H. G. and Lin, Q. (2014) Synthesis of cell-permeable stapled BH3 peptide-based Mcl-1 inhibitors containing simple aryl and vinylaryl cross-linkers. Tetrahedron 70, 7740-7745.
  31. Murugan, R. N., Park, J. E., Lim, D., Ahn, M., Cheong, C., Kwon, T., Nam, K. Y., Choi, S. H., Kim, B. Y., Yoon, D. Y., Yaffe, M. B., Yu, D. Y., Lee, K. S. and Bang, J. K. (2013) Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg. Med. Chem. 21, 2623-2634.
  32. Naumann, T. A., Tavassoli, A. and Benkovic, S. J. (2008) Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 9, 194-197.
  33. Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J. and Fairlie, D. P. (2017) Orally absorbed cyclic peptides. Chem. Rev. 117, 8094-8128.
  34. O’Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa, S. A. and DeGrado, W. F. (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509-515.
  35. Rezaeianpour, S., Bozorgi, A. H., Moghimi, A., Almasi, A., Balalaie, S., Ramezanpour, S., Nasoohi, S., Mazidi, S. M., Geramifar, P., Bitarafan-Rajabi, A. and Shahhosseini, S. (2017) Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Mol. Imaging Biol. 19, 256-264.
  36. Ross, N. C., Reilley, K. J., Murray, T. F., Aldrich, J. V. and McLaughlin, J. P. (2012) Novel opioid cyclic tetrapeptides: trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting kappa opioid receptor antagonism. Br. J. Pharmacol. 165, 1097-1108.
  37. Saito, T., Hirai, H., Kim, Y. J., Kojima, Y., Matsunaga, Y., Nishida, H., Sakakibara, T., Suga, O., Sujaku, T. and Kojima, N. (2002) CJ-15,208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J. Antibiot. 55, 847-854.
  38. Schlippe, Y. V., Hartman, M. C., Josephson, K. and Szostak, J. W. (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469-10477.
  39. Shan, L. (2004) Fluorescein-conjugated cyclic decapeptides, CGLIIQKNEC (CLT1) and CNAGESSKNC (CLT2). In Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).
  40. Storgard, C. M., Stupack, D. G., Jonczyk, A., Goodman, S. L., Fox, R. I. and Cheresh, D. A. (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J. Clin. Invest. 103, 47-54.
  41. Stupp, R., Hegi, M. E., Gorlia, T., Erridge, S. C., Perry, J., Hong, Y. K., Aldape, K. D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J. P., Wick, W., Tarnawski, R., Nam, D. H., Hau, P., Weyerbrock, A., Taphoorn, M. J., Shen, C. C., Rao, N., Thurzo, L., Herrlinger, U., Gupta, T., Kortmann, R. D., Adamska, K., McBain, C., Brandes, A. A., Tonn, J. C., Schnell, O., Wiegel, T., Kim, C. Y., Nabors, L. B., Reardon, D. A., van den Bent, M. J., Hicking, C., Markivskyy, A., Picard, M. and Weller, M.; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100-1108.
  42. Takagi, Y., Matsui, K., Nobori, H., Maeda, H., Sato, A., Kurosu, T., Orba, Y., Sawa, H., Hattori, K., Higashino, K., Numata, Y. and Yoshida, Y. (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett. 27, 3586-3590.
  43. Tambunan, U. S. and Alamudi, S. (2010) Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach. Bioinformation 5, 250-254.
  44. Trinh, T. B., Upadhyaya, P., Qian, Z. and Pei, D. (2016) Discovery of a direct ras inhibitor by screening a combinatorial library of cellpermeable bicyclic peptides. ACS Comb. Sci. 18, 75-85.
  45. Urech-Varenne, C., Radtke, F. and Heinis, C. (2015) Phage selection of bicyclic peptide ligands of the notch1 receptor. ChemMedChem 10, 1754-1761.
  46. Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. and Korsmeyer, S. J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466-1470.
  47. Wang, W., Shao, R., Wu, Q., Ke, S., McMurray, J., Lang, F. F., Jr., Charnsangavej, C., Gelovani, J. G. and Li, C. (2009) Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide. Mol. Imaging Biol. 11, 424-433.
  48. Wells, J. A. and McClendon, C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001-1009.
  49. Xu, S., Li, H., Shao, X., Fan, C., Ericksen, B., Liu, J., Chi, C. and Wang, C. (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem. 55, 6881-6887.
  50. Yamaguchi, S., Ito, S., Kurogi-Hirayama, M. and Ohtsuki, S. (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J. Control. Release 262, 232-238.
  51. Yan, B., Qiu, F., Ren, L., Dai, H., Fang, W., Zhu, H. and Wang, F. (2015) 99mTc-3P-RGD2 molecular imaging targeting integrin alphavbeta3 in head and neck squamous cancer xenograft. J. Radioanal. Nucl. Chem. 304, 1171-1177.
  52. Zhang, Y., Degen, D., Ho, M. X., Sineva, E., Ebright, K. Y., Ebright, Y. W., Mekler, V., Vahedian-Movahed, H., Feng, Y., Yin, R., Tuske, S., Irschik, H., Jansen, R., Maffioli, S., Donadio, S., Arnold, E. and Ebright, R. H. (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides. eLife 3, e02450.