Analysis of Change Transitions in Regional Types in Emergency Department Patient Flows of in Jeonlado (2014-2018)

전라지역 응급실 환자의 유출입 분석 및 지역유형 변화 추이

  • Lee, Jae-Hyeon (National Emergency Medical Center, National Medical Center) ;
  • Lee, Sung-Min (Department of Emergency Medicine, Chonnam National University Hospital) ;
  • Kim, Seongjung (Department of Emergency Medicine, Chosun University Hospital) ;
  • Oh, Mi-Ra (National Emergency Medical Center, National Medical Center)
  • 이재현 (국립중앙의료원 중앙응급의료센터) ;
  • 이성민 (전남대학교병원 응급의학과) ;
  • 김성중 (조선대학교병원 응급의학과) ;
  • 오미라 (국립중앙의료원 중앙응급의료센터)
  • Received : 2020.10.10
  • Accepted : 2020.12.20
  • Published : 2020.12.28


This study analyzed the inflow and outflow patterns of emergency department patients, to identify changes in regional types in cities, counties, and districts in Jeonlado, Korea. Data of areas in Jeonlado for 2014 to 2018 were extracted from the National Emergency Department Information System. The extracted data includes the patients' and emergency medical institution addresses, which were used to calculate the relevance index (RI) and commitment index (CI). The calculated indices were classified into regional types by applying cluster analysis. A non-parametric method, Kruskal-Wallis test, was employed to examine the differences between years for RI and CI by regional types. The results of cluster analysis using the relevance and commitment indices revealed three regional types. Regions in cluster 1 were classified as outflow type, in cluster 2 as inflow type, and in cluster 3 as self-sufficient. RI and CI were calculated for each cluster or regional type. There were no significant differences between years in cluster 2 (inflow type) and cluster 3 (self-sufficient type). In cluster 1 (outflow type), there were no significant differences in CI between the years; however, there were significant differences in RI between 2014 and 2017, and 2014 and 2018. It is difficult to see that the emergency medical environment has improved due to the increased concentration of emergency medical care.

본 연구는 전라도 지역 시·군·구의 지역 유형 변화를 파악하기 위하여 응급실 환자들의 유출입 현황을 분석하였다. 2014-2018년의 국가응급진료정보망에서 전라도 지역의 자료를 추출하였고, 환자의 주소와 응급의료기관 주소를 활용하여 지역친화도(Relevance index, RI)와 지역환자구성비(Commitment index CI)를 계산하였다. 계산된 지표들을 적용하여 군집분석으로 지역유형을 분류하였고, 비모수적 방법인 크루스칼-왈리스 검정을 사용하여 지역유형에 대한 RI와 CI의 연도별 차이를 살펴보았다. RI와 CI를 활용한 군집분석 결과는 3개의 지역유형으로 구분되었고, 군집 1은 유출형, 군집 2는 유입형, 군집 3은 자체충족형으로 분류되었다. 각 군집(지역유형)에 대한 RI와 CI의 연도별 차이에서는 군집 2(유입형)와 군집 3(자체충족형)은 유의한 차이가 없었다. 군집 1(유출형)은 CI에서는 유의한 차이가 없었고, RI에서 2004년은 2017년과 2018년에 유의한 차이가 있었다. 이는 응급의료 집중화가 심해진 반면, 응급의료 환경이 개선되었다고 보기는 어려운 것으로 해석된다.



  1. K. O. Ahn, J. Y. Hong, Y. Kim & K. Y. Jung. (2006). Appropriate Interhospital Transfer of Emergent Patients. Journal of The Korean Society of Emergency Medicine, 7(2), 138-145.
  2. T. A. H. Rocha, N. C. Silva, P. V. Amaral, A. C. Q. Barbosa, J. V. M. Rocha & V. Alvares. (2017). Addressing geographic access barriers to emergency care services: a national ecologic study of hospitals in Brazil. International Journal for Equity in Health, 16, 149. DOI : 10.1186/s12939-017-0645-4
  3. G. J. Yoon, S. I. Ha, J. Y. Uh, J. H. Kim, Y. S. Shin & S. H. Lee. (2014). Trends and issues for improvement of Korea healthcare delivery system. Korea Institute for Health and Social Affairs. Seoul.
  4. S. M. Kwon, E. Y. Bae & Y. J. Choi. (2010). Distinguishing role hospital and clinics ambiguous "current medical delivery system" must give clear function. Research Institute for Healthcare Policy Korean Medical Association. Seoul.
  5. J. R. Griffith. (1972). Quantitative Techniques for Hospital Planning and Control. MA : Lexington Books.
  6. M. Oh, B. U. Jeon, J. H. Lee, T. O. Jeong & T. Heo. (2019). Inflow and outflow type analysis of emergency department patients of the Honam region. Journal of The Korean Society of Emergency Medicine, 30(4), 348-354.
  7. Ministry of Health and Welfare. (2018). 2018-2022 Emergency medical basic plan (Online).
  8. S. H. Lee, J. I. Hwang, D. H. Hong & S. K. Park. (2004). Fundamental research for optimizing hospital resources. Korea health industry development institute, Chungbuk.
  9. M. Charrad, N. Ghazzali, V. Boiteau & A. Niknafs. (2014). NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, 61, 1-36. DOI : 10.18637/jss.v061.i06
  10. Ministry of Health and Welfare. (2017). Emergency medical vulnerable regions (Online).