DOI QR코드

DOI QR Code

Simultaneous Removal of Organic Pollutants, N, P, and Antibiotics from Liquid Fertilizer using a Microbubble and Catalyst Coupling System

마이크로버블/촉매 융합 시스템을 이용한 액비 내 유기오염물질, N, P 및 항생제 동시 제거

  • Lee, Dong Gwan (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Sim, Young Ho (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Paek, Yee (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Kwon, Jin Kyung (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Jang, Jae Kyung (Department of Agricultural Engineering, National Institute of Agricultural Sciences)
  • 이동관 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 심영호 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 백이 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 권진경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과)
  • Received : 2019.10.17
  • Accepted : 2019.10.28
  • Published : 2019.11.30

Abstract

This study investigated the use of a hydroxyl-radicals-generated microbubble/catalyst (MB/Cat) system for removing organic pollutants, nitrogen, and phosphorous from liquid fertilizer produced by livestock wastewater treatment. Use of the MB/Cat system aims to improve the quality of liquid fertilizer by removing pollutants originally found in the wastewater. In addition, a reduction effect has been reported for antibiotics classified as representative non-biodegradable matter. Samples of liquid fertilizer produced by an aerobic biological reactor for swine wastewater treatment were first analyzed for initial concentrations of pollutants and antibiotics. When the MB/Cat system was applied to the liquid fertilizer, TCOD, TOC, $BOD_5$, and $NH_3-N$, and $PO_4-P$ removal efficiencies were found to be approximately 52%, 51%, 30%, 21%, and 66%, respectively. Additionally, Amoxicillin hydrate was removed by 10%, and Chlortetracycline HCl and Florfenicol were not present at detectable levels These findings confirm that the MB/Cat system can be used with livestock wastewater treatment to improve liquid fertilizer quality and to process wastewater that is safe for agricultural re-use.

Acknowledgement

Grant : 가축 액상 분뇨 마이크로버블과 촉매 적용 가축분뇨 부하 저감 기술 개발

Supported by : 국립농업과학원

References

  1. Agarwal, A., Ng, W. J., Liu, Y., 2011, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84(9), 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
  2. Ahmadi, M., Motlagh, H. R., Jaafarzadeh, N., Mostoufi, A., Saeedi, R., Barzegar, G., Jorfi, S., 2017, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/$TiO_2$ nano-composite, J. Environ. Manage., 186, 55-63. https://doi.org/10.1016/j.jenvman.2016.09.088
  3. Bartrons, M., Penuelas, J., 2017, Pharmaceuticals and personal-care products in plants, Trends Plant Sci., 22(3), 194-203. https://doi.org/10.1016/j.tplants.2016.12.010
  4. Barhoumi, N., Olvera-Vargas, H., Oturan, N., Huguenot, D., Gadri, A., Ammar, S., Brillas, E., Oturan, M. A., 2017, Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite, Appl. Catal., B., 209, 637-647. https://doi.org/10.1016/j.apcatb.2017.03.034
  5. Carocho, M., Ferreira, I. C., 2013, A Review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives, Food Chem. Toxicol., 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
  6. Chen, Y. Y., Ma, Y. L., Yang, J., Wang, L. Q., Lv, J. M., Ren, C. J., 2017, Aqueous tetracycline degradation by $H_2O_2$ alone: removal and transformation pathway, Chem. Eng. J., 307, 15-23. https://doi.org/10.1016/j.cej.2016.08.046
  7. Chu, L. B., Xing, X. H., Yu, A. F., Zhou, Y. N., Sun, X. L., Jurcik, B., 2007, Enhanced ozonation of simulated dyestuff wastewater by microbubbles, Chemosphere, 68(10), 1854-1860. https://doi.org/10.1016/j.chemosphere.2007.03.014
  8. Gutin, S., Marinek-Logar, R., 2011, Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent, Process Saf. Environ. Prot., 89(1), 61-66. https://doi.org/10.1016/j.psep.2010.11.001
  9. Jang, J. K., Kim, M. Y., Sung, J. H., Chang, I. S., Kim, T. Y., Kim, H. W., Kim, Y. H., 2015, Effect of the application of microbubbles and/or catalyst on the sludge reduction and organic matter of livestock wastewater, J. Korean Soc. Environ. Eng., 37(10), 558-562. https://doi.org/10.4491/KSEE.2015.37.10.558
  10. Jang, J. K., Jin, Y. J., Kang, S., Kim, T., Paek, Y., Sung, J. H., Kim, Y. H., 2017, Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor, J. Korean Soc. Environ. Eng., 39(11), 599-606. https://doi.org/10.4491/KSEE.2017.39.11.599
  11. Kang, S. K., Choo, K. H., Lim, K. H., 2003, Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent, Sep. Sci. Technol., 38(15), 3853-3874. https://doi.org/10.1081/SS-120024236
  12. Khuntia, S., Majumder, S. K., Ghosh, P., 2012, Microbubble -aided water and wastewater purification: a review, Rev. Chem. Eng., 28(4-6), 191-221.
  13. Kim, G. T., Chung, K. Y., Park, J. K., 2014, Recent Water Treatment Technology for Unconventional Natural Resource Development, Korean Chem. Eng. Res., 52(2), 154-165. https://doi.org/10.9713/kcer.2014.52.2.154
  14. Kim, K. S., Yang, C. S., Mok, Y. S., 2013, Degradation of veterinary antibiotics by dielectric barrier discharge plasma, Chem. Eng. J., 219, 19-27. https://doi.org/10.1016/j.cej.2012.12.079
  15. Krishna, S., Ceriani, E., Marotta, E., Giardina, A., patenka, P., Paradisi, C., 2016, Products and mechanism of verapamil removal in water by air non-thermal plasma treatment, Chem. Eng. J., 292, 35-41. https://doi.org/10.1016/j.cej.2016.01.108
  16. Li, B., Irvin, S., Baker, K., 2006, The variation of nitrifying bacterial population sizes in a Sequencing Batch Reactor (SBR) treating low/mid/high concentrated wastewater, Proc. Water Environ. Fed., 2006(7), 5008-5029.
  17. Li, P., Takahashi, M., Chiba, K., 2009, Enhanced free-radical generation by shrinking microbubbles using a copper catalyst, Chemosphere, 77(8), 1157-1160. https://doi.org/10.1016/j.chemosphere.2009.07.062
  18. Marui, T., 2013, An Introduction to micro/nano-bubbles and their applications, J. Syst. Cybern. Inf., 11(4), 68-73.
  19. Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M. A., Ali, B. S., Islam, M. S., Hassan, M. A., 2012, Removal of Total Ammonia Nitrogen (TAN), nitrate and Total Organic Carbon (TOC) from aquaculture wastewater using electrochemical technology: a review, Desalination, 285, 1-13. https://doi.org/10.1016/j.desal.2011.09.029
  20. Oller, I., Malato, S., Sanchez-Perez, J., 2011, Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review, Sci. Total Environ., 409(20), 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
  21. Riffat, R., 2012, Fundamentals of wastewater treatment and engineering, Crc Press.
  22. Schroder, H. F., 1991, Identification of non-biodegradable, hydrophilic, organic substances in industrial and municipal waste water treatment plant-effluents by liquid chromatography-tandem mass spectrometry (LC/MS/MS), Water Sci. Technol., 23(1-3), 339-347. https://doi.org/10.2166/wst.1991.0432
  23. Shinde, S. S., Bhosale, C. H., Rajpure, K. Y., 2012, Hydroxyl radical's role in the remediation of wastewater, J. Photochem. Photobiol., B, Biol., 116, 66-74. https://doi.org/10.1016/j.jphotobiol.2012.08.003