DOI QR코드

DOI QR Code

Project Selection of Six Sigma Using Group Fuzzy AHP and GRA

그룹 Fuzzy AHP와 GRA를 이용한 식스시그마 프로젝트 선정방안

  • Yoo, Jung-Sang (Department of Industrial Engineering, Gachon University) ;
  • Choi, Sung-Woon (Department of Industrial Engineering, Gachon University)
  • 유정상 (가천대학교 산업경영공학과) ;
  • 최성운 (가천대학교 산업경영공학과)
  • Received : 2019.10.22
  • Accepted : 2019.11.20
  • Published : 2019.11.28

Abstract

Six sigma is an innovative management movement which provides improved business process by adapting the paradigm and the trend of market and customers. Suitable selection of six sigma project could highly reduce the costs, improve the quality, and enhance the customer satisfaction. There are existing studies on the selection of Six Sigma projects, but few studies have been conducted to select the correct project under an incomplete information environment. The purpose of this study is to propose the application of integrated MCDM techniques for correct project selection under incomplete information. The project selection process of six sigma involves four steps as follows: 1) determination of project selection criteria 2) calculation of relative importance of team member's competencies 3) assessment with project preference scale 4) finalization of ranking the projects. This study proposes the combination methods by applying group fuzzy Analytical Hierarchy Process (AHP), an easy defuzzified number of Trapezoidal Fuzzy Number (TrFN) and Grey Relational Analysis (GRA). Both of the weight of project selection criteria and the relative importance of team member's competencies can be evaluated by group fuzzy AHP. Project preferences are assessed by easy defuzzified scale of TrFN in case of incomplete information.)

References

  1. S. Choi. (2006). Classification of Six Sigma Innovation Process. Journal of the Korea Safety and Management Science, 8(4), 239-247.
  2. S. Lee, Y. Jo & Y. Kim. (2010). A Study on the Recognition Difference of the Success Factors of Six Sigma on the Line of Size. Journal of Digital Convergences, 8(2), 177-188.
  3. R. Banuelas, C. Tennant, I. Tuersley & S. Tang. (2006). Selection of Six Sigma Projects in the UK. The TQM Magazine, 18(5), 514-527. DOI : 10.1108/09544780610685485 https://doi.org/10.1108/09544780610685485
  4. T. Yang & C. Hsieh. (2009). Six-Sigma Project Selection Using National Quality Award Criteria and Delphi Fuzzy Multiple Criteria Decision-Making Method. Expect Systems with Applications, 36, 7594-7603. DOI : 1 0.1016/j.eswa.2008.09.045 https://doi.org/10.1016/j.eswa.2008.09.045
  5. S. Sharma & A. R. Chetiya. (2016). Six Sigma Project Selection : An Analysis of Responsible Factors. International Journal of Lean Six Sigma, 1(4), 280-292. DOI : 10.1108/20401461011096069 https://doi.org/10.1108/20401461011096069
  6. K. Mittal, P. C. Tewari & D. Khanduja. (2017). On the Right Approach to Selecting a Quality Improvement Project in Manufacturing Industries. Operations Research and Decisions, 1, 105-124., DOI : 10.5277/ord170106
  7. B. Kornfeld & S. Kara. (2013). Selection of Lean and Six Sigma Projects in Industry. International Journal of Lean Six Sigma, 4(1), 4-16. DOI : 10.1108/20401461311310472 https://doi.org/10.1108/20401461311310472
  8. P. S. Mueller & J. A. Cross. (2018). Factors Impacting Individual Six Sigma Adoption. International Journal of Lean Six Sigma. DOI : 10.1108/IJLSS-04-2018-0040
  9. S. Ray & P. Das. (2010). Six Sigma Project Selection Methodology. International Journal of Lean Six Sigma, 1(4), 293-309. DOI : 10.1108/20401461011096078 https://doi.org/10.1108/20401461011096078
  10. S. Sadi-Nezhad. (2017). A State-of-Art Survey on Project Selection Using MCDM Techniques. Factors Impacting Individual Six Sigma Adoption. DOI : 10.5267/j.jpm.2017.6.001
  11. R. Padhy. (2017). Six Sigma Project Selections : A Critical Review. International Journal of Lean Six Sigma, 8(2), 244-258. DOI : 10.1108/IJLSS-06-2016-0025
  12. J. Oh & S. Lee. (2019). A Movie Recommendation System Processing High-Dimensional Data with Fuzzy-AHP and Fuzzy Association Rules. Journal of Digital Convergences, 17(2), 347-353. DOI : 10.14400/JDC.2019.17.2.347
  13. B. Ahadian & A.G.M. Abadi. (2012). Six Sigma Pilot Project Selections Using an MCDM Approach. Management Science and Engineering, 6(1), 34-43. DOI : 10.3968/j.mse.1913035X20120601.1999
  14. M. Kumar, J. Antony & B. R. Cho. (2009). Project Selection and its Impact on the Successful Deployment of Six Sigma. Business Process Management Journal, 15(5), 669-686. DOI : 10.1108/14637150910987900 https://doi.org/10.1108/14637150910987900
  15. S. K. Tiwari, R. K. Singh & S. C. Srivastava. (2013). Six Sigma Project Selection Using Extent Fuzzy AHP : An Empirical Study, International Journal of Research in Industrial Engineering, 2(2), 47-60.
  16. I. Otay & C. Kahraman. (2017). Six Sigma Project Selection Using Interval Neutrosophic TOPSIS. Proceedings of EUSFLAT-2017-The 10 th Conference of the EUROPEAN Society for Fuzzy Logic and Technology, 83-93.
  17. A. Hadi-Vencheh & A. Yousefi. (2018). Selecting Six Sigma Project : A Comparative Study of DEA and LDA Techniques. International Journal of Lean Six Sigma. 9(4), 506-522. DOI : 10.1108/IJLSS-11-2016-0067 https://doi.org/10.1108/IJLSS-11-2016-0067
  18. U. D. Kumar, H. Saranga, J. E. Ramirez-Marquez & O. Nowicki. (2007). Six Sigma Project Selection Using Data Envelopment Analysis. The TQM Magazine, 19(5), 419-441. DOI : 10.1108/09544780710817856 https://doi.org/10.1108/09544780710817856
  19. S. Percin & C. Kahraman. (2010). An Integrated Fuzzy Multi-Criteria Decision-Making Approach for Six Sima Project. International Journal of Computational Intelligence Systems, 3(5), 610-621. DOI : 10.1080/18756891.2010.9727727
  20. P. Pangsri. (2015). Application of the Multi Criteria Decision Making Methods for Project Selection. Universal Journal of Management, 3(1), 15-20. DOI : 10.13189/ujm.2015.030103 https://doi.org/10.13189/ujm.2015.030103
  21. M. A. Ortiz, H. A. Felizzola & S. N. Isaza. (2015). A Contrast Between DEMATEL-ANP and ANP Methods for Six Sigma Project Selection : A Case Study in Healthcare Industry. BMC Medical Information & Decision Making, 15(Suppl 3), 1-12. DOI : 10.1186/1472-6947-15-S3-S3 https://doi.org/10.1186/s12911-015-0129-7
  22. F. Wang, C. Hsu & G. Tzeng. (2014). Applying a Hybrid MCDM Model for Six Sigma Project Selection. Mathematical Problems in Engineering, 1-13. DOI : 10.1155/2014/730934 https://doi.org/10.1155/2014/730934
  23. G. Buyukozkan & D. Ozturkcan. (2010). An Integrated Analytic Approach for Six Sigma Project Selection. Expert Systems with Applications, 37, 5835-5847. DOI : 10.1016/j.eswa.2010.02.022 https://doi.org/10.1016/j.eswa.2010.02.022
  24. S. Vinodh & V. Swarnakar. (2015). Lean Six Sigma Project Selection Using Hybrid Approach Based on Fuzzy DEMATEL-ANP-TOPSIS. International Journal of Lean Six Sigma, 6(4), 313-338. DOI : 10.1108/IJLSS-12-2014-0041 https://doi.org/10.1108/IJLSS-12-2014-0041
  25. R. K. Padhy & S. Sahu. (2011). A Real Option Based Six Sigma Project Evaluation and Selection Model. International Journal of Project Management, 29, 1091-1102. DOI : 10.1016/j.ijproman.2011.01.011 https://doi.org/10.1016/j.ijproman.2011.01.011
  26. V. Kalashnikov, F. Benita, F. Lopez-Ramos & A. Hernandez-Luna. (2017). Bi-Objective Project Portfolio Selection in Lean Six Sigma. International Journal of Production Economics, 186, 81-88. DOI : 10.1016/j.ijpe.2017.01.015 https://doi.org/10.1016/j.ijpe.2017.01.015
  27. A. S. Rayarikar. (2016). Using Big Data Analytics for Effective Six Sigma Project Selection. Master Thesis, Purdue University. DOI : open_access_theses/989
  28. R. Rathi, D. Khanduja & S. K. Sharma. (2015). Six Sigma Project Selection Using Fuzzy TOPSIS Decision Making Approach. Management Science Letters, 5, 447-456. DOI : 10.5267/j.msl.2015.3.009 https://doi.org/10.5267/j.msl.2015.3.009
  29. R. Rathi, D. Khanduja & S.K. Sharma. (2016). Efficacy of Fuzzy MADM Approach in Six Sigma Analysis Phase in Automotive Sector, Journal of Industrial Engineering International, 12, 377-387. DOI : 10.1007/s40092-016-0143-0 https://doi.org/10.1007/s40092-016-0143-0
  30. A. Jafarian, M.S. Nikabadi & M. Amiri. (2014). Framework for Prioritizing and Allocating Six Sigma Projects Using Fuzzy TOPSIS and Fuzzy Expert System. Scientia Iranica Transactions E : Industrial Engineering, 21(6), 2281-2294.
  31. S. Choi. (2019). Implementation Strategy of Risk Evaluation Using Fuzzy DST/AHP, TOPSIS and Grey Theory in FMEA Under Uncertain Environment. Journal of the korea Management Engineers Society, 24(3), 65-87.
  32. D.Y. Chang. (1996). Applications of the Extent Analysis Method on Fuzzy AHP. European Journal of Operational Research, 95, 645-655. DOI : 10.1016/0377-2217(95)00300-2
  33. C. B. Chen & C. M. Klein. (1997). A Simple Approach to Ranking a Group of Aggregated Fuzzy Utilities. IEEE Transactions on Systems Man and Cybernetics, Part B, 27(1), 26-35. DOI : org/10.1109/3477.552183 https://doi.org/10.1109/3477.552183
  34. S. Liu & Y. Lin. (2010). Grey Systems : Theory and Applications. Berlin Hidelberg : Springer Verlag. DOI : 10.1007/978-3-642-16158-2
  35. H. C. Liu, L. Liu, Q. H. Bian, Q. L. Lin, N. Dong & P. C. Xu. (2011). Failure Mode and Effects Analysis Using Fuzzy Evidential Reasoning Approach and Grey Theory. Expert Systems with Applications, 38, 4403-4415. DOI : 10.1016/j.eswa.2010.09.110 https://doi.org/10.1016/j.eswa.2010.09.110
  36. K. Chin, Y. Wang, G. K. K. Poon & J. Yang. (2008). Failure Mode and Effects Analysis Using a Group-Based Evidential Reasoning Approach. Computers & Operations Research, 36, 1768-1779. DOI : 10.1016/j.cor.2008.05.002
  37. Korean Standards Association. (2018). Case of Excellent Quality Circle, Korean National Quality Award [Online]. http://Knqa.ksa.or.kr/knqa/2294/subview