DOI QR코드

DOI QR Code

Acanthophysium sp. KMF001, a New Strain with High Cellulase Activity

  • YOON, Sae-Min (Department of Forest Products and Biotechnology, Kookmin University) ;
  • PARK, So-Hyun (Department of Forest Products and Biotechnology, Kookmin University) ;
  • KIM, Tea-Jong (Department of Forest Products and Biotechnology, Kookmin University) ;
  • KIM, Young-Kyoon (Department of Forest Products and Biotechnology, Kookmin University) ;
  • KIM, Yeong-Suk (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2019.09.16
  • Accepted : 2019.10.31
  • Published : 2019.11.25

Abstract

Cellulase is an eco-friendly biocatalyst, and its demand is growing in many industrial applications such as food, textile, paper, and bioenergy. Strains with a high cellulase activities are the starting point for the economic production of cellulase. In a previous study, Acanthophysium sp. KMF001 with high cellulase production ability was selected among 54 wood-rotting fungi. In this study, we evaluated the cellulase productivity of Acanthophysium sp. KMF001 quantitatively and analyzed its taxonomic location using a genetic method. Acanthophysium sp. KMF001 showed high cellulase productivity similar to that of Acanthophysium bisporum and was much better than A. bisporum in specific enzyme activity. The 28S rRNA sequence of Acanthophysium sp. KMF001 was similar to that of Acanthophysium lividocaeruleum MB1825, with 98.40% homology. Phylogenetic analysis suggested that Acanthophysium sp. KMF001 is a new strain. In this study, we propose a new strain with high cellulase productivity.

Keywords

cellulase;Acanthophysium;new strain;28S rRNA;phylogenetic

Acknowledgement

Supported by : Korea Forestry Promotion Institute

References

  1. Ali, S.R., Muthuvelayudham, R., Viruthagiri, T. 2013. Enhanced production of cellulase from tapioca stem using response surface methodology. Innovative Romanian Food Biotechnology 12(March): 40-51.
  2. Biswas, A.K., Umeki, K., Yang, W., Blasiak, W. 2011. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Processing Technology 92(10): 1849-1854. https://doi.org/10.1016/j.fuproc.2011.04.038
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Castellanos, O.F., Sinitsyn, A.P., Vlasenko, E.Y. 1995. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource Technology 52(2): 119-124. https://doi.org/10.1016/0960-8524(95)00011-3
  5. Delabona, P.d.S., Farinas, C.S., da Silva, M.R., Azzoni, S.F., Pradella, J.G.d.C. 2012. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresource Technology 107: 517-521. https://doi.org/10.1016/j.biortech.2011.12.048
  6. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., Hayn, M. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology 36(1): 51-65. https://doi.org/10.1016/0960-8524(91)90099-6
  7. Fang, H., Zhao, C., Song, X.-Y. 2010. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reeseiRUT-C30 and Aspergillus niger NL02. Bioresource Technology 101(11): 4111-4119. https://doi.org/10.1016/j.biortech.2010.01.078
  8. Gao, D., Haarmeyer, C., Balan, V., Whitehead, T.A., Dale, B.E., Chundawat, S.P.S. 2014. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnology for Biofuels 7(1): 175. https://doi.org/10.1186/s13068-014-0175-x
  9. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology 99(16): 7623-7629. https://doi.org/10.1016/j.biortech.2008.02.005
  10. Goldbeck, R., Ramos, M.M., Pereira, G.A.G., Maugeri-Filho, F. 2013. Cellulase production from a new strain Acremonium strictumisolated from the Brazilian biome using different substrates. Bioresource Technology 128: 797-803. https://doi.org/10.1016/j.biortech.2012.10.034
  11. Goyal, A., Ghosh, B., Eveleigh, D. 1991. Characteristics of fungal cellulases. Bioresource Technology 36(1): 37-50. https://doi.org/10.1016/0960-8524(91)90098-5
  12. Haigler, C.H., Weimer, P.J. 1991. Biosynthesis and biodegradation of cellulose. Marcel Dekker New York.
  13. Hong, J., Tamaki, H., Akiba, S., Yamamoto, K., Kumagai, H. 2001. Cloning of a gene encoding a highly stable endo-a-1, 4-glucanase from Aspergillus nigerand its expression in yeast. Journal of Bioscience and Bioengineering 92(5): 434-441. https://doi.org/10.1016/S1389-1723(01)80292-9
  14. Howard, R., Abotsi, E., Jansen van Rensburg, E. 2002. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12): 602-619.
  15. Jorgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., Olsson, L. 2003. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology 32(7): 851-861. https://doi.org/10.1016/S0141-0229(03)00056-5
  16. Jamshidian, H., Shojaosadati, S.A., Vilaplana, F., Mousavi, S.M., Soudi, M.R. 2016. Characterization and optimization of schizophyllan production from date syrup. International Journal of Biological Macromolecules 92: 484-493. https://doi.org/10.1016/j.ijbiomac.2016.07.059
  17. Kim, J.Y., Yoon, S.M., Kim, Y.S. 2015a. Cellulase Activity of Symbiotic Bacteria from Snails, Achatina fulica. Journal of the Korean Wood Science and Technology 43(5): 628-640. https://doi.org/10.5658/WOOD.2015.43.5.628
  18. Kim, Y.S., Kim, T.J., Shin, K., Yoon, S.M. 2015b. Novel Acanthophysiumsp. KMF001 having high cellulase activity. US patent Application number: 14/930585.
  19. Kurabi, A., Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Robinson, J., Markov, A., Skomarovsky, A., Gusakov, A., Okunev, O., Sinitsyn, A., Gregg, D., Xie, D., Saddler, J. 2005. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated douglas-fir by novel and commercial fungal cellulases. Applied Biochemistry and Biotechnology 121(1): 219-230. https://doi.org/10.1385/ABAB:121:1-3:0219
  20. Leathers, T.D., Sutivisedsak, N., Nunnally, M.S., Price, N.P.J., Stanley, A.M. 2015. Enzymatic modification of schizophyllan. Biotechnology Letters 37(3): 673-678. https://doi.org/10.1007/s10529-014-1707-y
  21. Lee, B.-H., Kim, B.-K., Lee, Y.-J., Chung, C.-H., Lee, J.-W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology 46(1): 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  22. Li, Y.-H., Ding, M., Wang, J., Xu, G.-j., Zhao, F. 2006. A novel thermoacidophilic endoglucanase, Ba- EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Applied Microbiology and Biotechnology 70(4): 430-436. https://doi.org/10.1007/s00253-005-0075-x
  23. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153(2): 375-380.
  24. Pandey, A., Webb, C., FERNANDES, M., Larroche, C. 2006. Enzyme Technology. Springer-Verlag New York Inc., New York.
  25. Rosgaard, L., Pedersen, S., Cherry, J.R., Harris, P., Meyer, A.S. 2006. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 22(2): 493-498. https://doi.org/10.1021/bp050361o
  26. Schulein, M. 1988. Cellulases of Trichoderma reesei, Methods in Enzymology (vol. 160. pp. 234-242), Academic Press.
  27. Shin, K., Yoon, S.-M., Kim, J.H., Kim, Y.-K., Kim, T.-J., Kim, Y.-S. 2016. Biopolishing of cotton fabric using crude cellulases from Acanthophysium sp. KMF001. Journal of the Korean Wood Science and Technology 44(3): 381-388. https://doi.org/10.5658/WOOD.2016.44.3.381
  28. Smits, J.P., Rinzema, A., Tramper, J., Sonsbeek, H.M.V., Knol, W. 1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiology and Biotechnology 46(5): 489-496. https://doi.org/10.1007/s002530050849
  29. Sutivisedsak, N., Leathers, T.D., Bischoff, K.M., Nunnally, M.S., Peterson, S.W. 2013. Novel sources of a-glucanase for the enzymatic degradation of schizophyllan. Enzyme and Microbial Technology 52(3): 203-210. https://doi.org/10.1016/j.enzmictec.2012.12.002
  30. Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8): 1596-1599. https://doi.org/10.1093/molbev/msm092
  31. Yoon, S.-M., Kim, Y.-S., Kim, Y.-K., Kim, T.-J. 2018. A novel endo-a-1,4-xylanase from Acanthophysium sp. KMF001, a wood rotting fungus. Journal of the Korean Wood Science and Technology 46(6): 670-680.
  32. Zhang, H., Sang, Q., Zhang, W. 2012. Statistical optimization of cellulases production by Aspergillus nigerHQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. Annals of Microbiology 62(2): 629-645. https://doi.org/10.1007/s13213-011-0300-z
  33. Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. 2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100(8): 2411-2418. https://doi.org/10.1016/j.biortech.2008.10.057