Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen (Department of Civil Engineering, DCRUST Murthal) ;
  • Jindal, Bharat Bhushan (School of Civil Engineering, Shri Mata Vaishno Devi University) ;
  • Junaid, M. Talha (Civil & Environmental Engineering Department, University of Sharjah) ;
  • Saloni, Saloni (Department of Civil Engineering, DCRUST Murthal)
  • Received : 2019.06.15
  • Accepted : 2019.08.28
  • Published : 2019.11.25


This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.


  1. ASTM (2001), C138-01: Standard Test Method for Density (unit weight), Yield, and Air Content (gravimetric) of Concrete International, ASTM International, West Conshohocken, PA, USA.
  2. ASTM (2002), C3171-99: Standard Test Method for Constituent Content of Composite Materials, Annual Book of ASTM Standards, West Conshohocken, PA, USA.
  3. ASTM (2014), C348-14: Standard Test Method for Flexural Strength of Hydraulic-cement Mortars, American Society for Testing and Materials, West Conshohocken, PA, USA.
  4. Aziz, I.K.A., Abdullah, M.M.A.B., Yong, H.C. and Ming, L.Y. (2019), "Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature", Adv. Cement Res., 1-28.
  5. Buchwald, A., Dombrowski, K. and Weil, M. (2005), "The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids", Proceedings of the World Geopolymer, 35-39.
  6. Chareerat, T., Lee-anansaksiri, A. and Chindaprasirt, P. (2006), "Synthesis of high calcium fly ash and calcined kaolin geopolymer mortar. International conference on pozzolan", Concrete Geopolym., 24-25.
  7. Chindaprasirt, P., Chareerat, T., Hatanaka, S. and Cao, T. (2010), "High-strength geopolymer using fine high-calcium fly ash", J. Mater. Civil Eng., 23(3), 264-270.
  8. Dombrowski, K., Buchwald, A. and Weil, M. (2007), "The influence of calcium content on the structure and thermal performance of fly ash based geopolymers", J. Mater. Sci., 42, 3033-3043.
  9. Givi, A.N., Rashid, S.A., Aziz, F.N.A. and Salleh, M.A.M. (2010), "Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete", Constr. Build. Mater., 24, 2145-2150.
  10. Glasser, F.P. and Zhang, L. (2001), "High-performance cement matrices based on calcium sulfoaluminate-belite compositions", Cement Concrete Res., 31, 1881-1886.
  11. Green, J. (2015) "Global demand for cement to reach 5.2 billion tonn", Europe and CIS: World Cement,:
  12. Guo, X., Shi, H. and Wei, X. (2017), "Pore properties, inner chemical environment, and microstructure of nano-modified CFA-WBP (class C fly ash-waste brick powder) based geopolymers", Cement Concrete Compos., 79, 53-61.
  13. He, J., Jie, Y., Zhang, J., Yu, Y. and Zhang, G. (2013), "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites", Cement Concrete Compos., 37, 108-118.
  14. Hoy, M., Rachan, R., Horpibulsuk, S., Arulrajah, A. and Mirzababaei, M. (2017), "Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement-Fly ash geopolymer", Constr. Build. Mater., 144, 624-634.
  15. Hwang, C.L. and Huynh, T.P. (2015), "Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers", Constr. Build. Mater., 101, 1-9.
  16. Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S. and Van Deventer, J.S. (2014). "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cement Concrete Compos., 45, 125-135.
  17. Jindal, B.B., Singhal, D., Sharma, S., Yadav, A., Shekhar, S. and Anand, A. (2017a), "Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete", Comput. Concrete, 20, 683-688.
  18. Jindal, B.B., Singhal, D. and Sharma, S.K. (2017b), "Suitability of ambient-cured alccofine added low-calcium fly ash-based geopolymer concrete", Indian J. Sci. Technol., 10(12), 1-10.
  19. Jindal, B.B., Singhal, D., Sharma, S.K., Ashish, D.K. and Parveen. (2017c), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5, 17-29.
  20. Jindal, B.B. (2019), "Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review", Constr. Build. Mater., 227, 116644.
  21. Kartini, K. (2011), "Rice husk ash-pozzolanic material for sustainability", Int. J. Appl. Sci. Technol., 1, 169-178.
  22. Lee, N. and Lee, H.K. (2015), "Reactivity and reaction products of alkali-activated, fly ash/slag paste", Constr. Build. Mater., 81, 303-312.
  23. Malhotra, V. (1999), "Making concrete greener with fly ash", Concrete Int., 21, 61-66.
  24. Malhotra, V. (2002), "Introduction: sustainable development and concrete technology", Concrete Int., 24(7), 22.
  25. Mehta, A. and Siddique, R. (2017), "Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash", Constr. Build. Mater., 150, 792-807.
  26. Mehta, A. and Siddique, R. (2018), "Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties", J. Clean. Prod., 205, 49-57.
  27. Nath, P. and Sarker, P.K. (2015), "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cement Concrete Compos., 55, 205-214.
  28. Pacheco-Torgal, F. (2015), "Introduction to handbook of alkali-activated cements, mortars and concretes", Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier.
  29. Parveen., Singhal, D. and Jindal, B.B. (2017), "Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine", Adv. Concrete Constr., 5, 345-358.
  30. Parveen., Singhal, D., Junaid, M.T., Jindal, B.B. and Mehta, A. (2018), "Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing", Constr. Build. Mater., 180, 298-307.
  31. Pawar, M. and Saoji, A. (2013), "Effect of alccofine on self compacting concrete", Int. J. Eng. Sci. (IJES), 2, 5-9.
  32. Phoo-ngernkham, T., Hanjitsuwan, S., Suksiripattanapong, C., Thumrongvut, J., Suebsuk, J. and Sookasem, S. (2016), "Flexural strength of notched concrete beam filled with alkaliactivated binders under different types of alkali solutions", Constr. Build. Mater., 127, 673-678.
  33. Punurai, W., Kroehong, W., Saptamongkol, A. and Chindaprasirt, P. (2018), "Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste", Constr. Build. Mater., 186, 62-70.
  34. Safiuddin, M., West, J. and Soudki, K. (2010), "Hardened properties of self-consolidating high performance concrete including rice husk ash", Cement Concrete Compos., 32, 708-717.
  35. Saha, S. and Rajasekaran, C. (2017), "Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag", Constr. Build. Mater., 146, 615-620.
  36. Timakul, P., Rattanaprasit, W. and Aungkavattana, P. (2016), "Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition", Ceram. Int., 42, 6288-6295.
  37. Washburn, E.W. (1921), "Note on a method of determining the distribution of pore sizes in a porous material", Proc. Nat. Acad. Sci., 7, 115-116.
  38. Yang, K.H., Song, J.K., Ashour, A.F. and Lee, E.T. (2008), "Properties of cementless mortars activated by sodium silicate", Constr. Build. Mater., 22, 1981-1989.
  39. Ye, G., Lura, P. and Van Breugel, V.K. (2006), "Modelling of water permeability in cementitious materials", Mater. Struct., 39, 877-885.
  40. Zareei, S.A., Ameri, F., Dorostkar, F. and Ahmadi, M. (2017), "Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties", Case Stud. Constr. Mater., 7, 73-81.