DOI QR코드

DOI QR Code

Effect of Radiation Heat Transfer on the Control of Temperature Gradient in the Induction Heating Furnace for Growing Single Crystals

전자기 유도가열식 단결정 성장로의 온도 구배제어에 있어 복사열 전달의 효과

  • Park, Tae-Yong (Energy Efficient Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Yun-Ji (Energy Efficient Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ha, Minh-Tan (Energy Efficient Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Energy Efficient Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Young-Soo (Department of Materials System Engineering, Pukyong National University) ;
  • Jeong, Seong-Min (Energy Efficient Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 박태용 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 신윤지 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 하민탄 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 배시영 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 임영수 (부경대학교 신소재시스템공학과) ;
  • 정성민 (한국세라믹기술원 에너지환경본부 에너지효율소재센터)
  • Received : 2019.09.24
  • Accepted : 2019.10.05
  • Published : 2019.11.01

Abstract

In order to fabricate high-quality SiC substrates for power electronic devices, various single crystal growing methods were prepared. These include the physical vapor transport (PVT) and top seeded solution growth (TSSG) methods. All the suggested SiC growth methods generally use induction-heating furnaces. The temperature distribution in this system can be easily adjusted by changing the hot-zone design. Moreover, precise temperature control in the induction-heating furnace is favorably required to grow a high-quality crystal. Therefore, in this study, we analyzed the heat transfer in these furnaces to grow SiC crystals. As the growth temperature of SiC crystals is very high, we evaluated the effect of radiation heat transfer on the temperature distribution in induction-heating furnaces. Based on our simulation results, a heat transfer strategy that controls the radiation heat transfer was suggested to obtain the optimal temperature distribution in the PVT and TSSG methods.

References

  1. Grand View Research, Silicon Carbide Market Size, Share & Trend Analysis Report, www.grandviewresearch.com/industryanalysis/silicon-carbide-market (2019).
  2. Y. M. Tairov and V. F. Tsvetkov, J. cryst. Growth, 43, 209 (1978). [DOI: https://doi.org/10.1016/0022-0248(78)90169-0] https://doi.org/10.1016/0022-0248(78)90169-0
  3. A. A. Lebedev and V. E. Chelnokov, Semiconductors, 33, 999 (1999). [DOI: https://doi.org/10.1134/1.1187823] https://doi.org/10.1134/1.1187823
  4. C. B. Carter and M. G. Norton, Ceramic Materials Science and Engineering (Springer, New York, 2007) p. 508.
  5. D. H. Hofmann and M. H. Muller, Mater. Sci. Eng., B, 61, 29 (1999). [DOI: https://doi.org/10.1016/S0921-5107(98)00440-1]
  6. Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, and T. Ujihara, Appl. Phys. Express, 5, 115501 (2012). [DOI: https://doi.org/10.1143/APEX.5.115501] https://doi.org/10.1143/APEX.5.115501
  7. J. Y. Yoon, M. H. Lee, Y. Kim, W. S. Seo, Y. G. Shul, W. J. Lee, and S. M. Jeong Jpn. J. Appl. Phys., 56, 065501 (2017). [DOI: https://doi.org/10.7567/JJAP.56.065501] https://doi.org/10.7567/JJAP.56.065501
  8. J. E. Lee, B. G. Kim, J. Y. Yoon, M. T. Ha, M. H. Lee, Y. Kim, W. S. Seo, H. J. Choi, W. J. Lee, and S. M. Jeong, Ceram. Int., 42, 11611 (2016). [DOI: https://doi.org/10.1016/ j.ceramint. 2016.04.060] https://doi.org/10.1016/j.ceramint.2016.04.060
  9. Z. C. Feng, SiC Power Materials: Devices and Applications (Springer, Heidelberg, 2004) p. 6.
  10. S. A. Sakwe, M. Stockmeier, P. Hens, R. Muller, D. Queren, U. Kunecke, K. Konias, R. Hock, A. Magerl, M. Pons, A. Winnacker, and P. Wellmann, Phys. Status Solidi B, 245, 1239 (2008). [DOI: https://doi.org/10.1002/pssb.200743520] https://doi.org/10.1002/pssb.200743520
  11. J. Y. Yoon, M. H. Lee, W. S. Seo, Y. G. Shul, and S. M. Jeong, J. Kor. Cryst. Growth Cryst. Technol., 26, 8 (2016). [DOI: https://doi.org/10.6111/JKCGCT.2016.26.1.008] https://doi.org/10.6111/JKCGCT.2016.26.1.008
  12. F. Mercier, J. M. Dedulle, D. Chaussende, and M. Pons, J. Cryst. Growth, 312, 115 (2010). [DOI: https://doi.org/10.1016/j.jcrysgro.2009.10.007]
  13. V. Rudnev, D. Loveless, and R. L. Cook, Handbook of Induction Heating, Second Edition (CRC press, 2017) p. 60.
  14. H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (William Andrew, 1993) p. 61.
  15. L. Biasetto, M. Manzolaro, and A. Andrighetto, Eur. Phys. J. A, 38, 167 (2008). [DOI: https://doi.org/10.1140/epja/i2008-10666-6] https://doi.org/10.1140/epja/i2008-10666-6
  16. F. Wang, L. Cheng, H. Mei, Q. Zhang, and L. Zhang, Int. J. Thermophys., 35, 62 (2014). [DOI: https://doi.org/10.1007/s10765-013-1533-9] https://doi.org/10.1007/s10765-013-1533-9
  17. S. K. Seo, J. S. Roh, G. H. Kim, S. H. Chi, and E. S. Kim, Korean J. Mater. Res., 18, 645 (2008). [DOI: https://doi.org/10.3740/MRSK.2008.18.12.645] https://doi.org/10.3740/MRSK.2008.18.12.645
  18. K. Kusunoki, Y. Kishida, and K. Seki, Mater. Sci. Forum, 963, 85 (2018). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.963.85]