DOI QR코드

DOI QR Code

Visco-Elastic Properties of Glass Fiber Manufactured by Slag Material

슬래그 원료를 사용해서 제조된 유리섬유의 점탄성 특성

  • Lee, Ji-Sun (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sun-Woog (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ra, Yong-Ho (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Youngjin (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Tae-Young (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Jonghee (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Dae-Woo (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Optic & Electric Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 이지선 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김선욱 (한국세라믹기술원 광.전자부품소재센터) ;
  • 라용호 (한국세라믹기술원 광.전자부품소재센터) ;
  • 이영진 (한국세라믹기술원 광.전자부품소재센터) ;
  • 임태영 (한국세라믹기술원 광.전자부품소재센터) ;
  • 황종희 (한국세라믹기술원 광.전자부품소재센터) ;
  • 전대우 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김진호 (한국세라믹기술원 광.전자부품소재센터)
  • Received : 2019.09.17
  • Accepted : 2019.10.16
  • Published : 2019.11.01

Abstract

This study investigated the influence of the viscoelastic property of slag when producing glass fiber, MFS631 with 60% of manganese slag, 30% of steel slag, and 10% of silica stone. To fabricate the MFS631 glass bulk, slag materials were placed in an alumina crucible, melted at $1,550^{\circ}C$ for 2 h, and then annealed at $600^{\circ}C$ for 2 h. It was found that glass is non-crystalline through X-ray diffraction analysis. MFS631 fiber was produced at speed in the range of 100~300 rpm at $1,150^{\circ}C$. The loss modulus (G") and storage modulus (G') of the produced glass fiber were evaluated at high temperatures. G' and G" of MFS631 were greater than $893^{\circ}C$, and the modulus value was 136,860 pa. This is similar to the results of a general E-glass fiber graph. Therefore, it was concluded that its spinnability is similar to that of E-glass fiber; therefore, it can be commercialized.

Acknowledgement

Supported by : 산업통상자원부

References

  1. J. H. Im and S. W. Lee, Korean J. Met. Mater., 42, 102 (2004).
  2. F. T. Wallenberger, J. B. Macchesney, R. Naslain, and H. D. Ackler, Advanced Inorganic Fibers - Process, Structures, Properties, Applications (Kluwer Academic Publishers, Netherlands, 2000) p. 149.
  3. F. T. Wallenberger, J. B. Macchesney, R. Naslain, and H. D. Ackler, Advanced Inorganic Fibers - Process, Structures, Properties, Applications (Kluwer Academic Publishers, Netherlands, 2000) p. 93.
  4. B. H. Kim, Glass Technology (Chungmungak, 2009) p. 431.
  5. H. Iba, T. Chang, and Y. Kagawa, Compos. Sci. Technol., 62, 2043 (2002). [DOI: https://doi.org/10.1016/S0266-3538(02)00156-2] https://doi.org/10.1016/S0266-3538(02)00156-2
  6. K. C. Song and I. J. Chung, Korean J. Chem. Eng., 3, 393 (1996).
  7. C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe. Chem. Soc. Rev., 41, 4708 (2012). https://doi.org/10.1039/c2cs35083a
  8. J. D. Kunicki and A. C. Lasaga, Am. Mineral., 73, 941 (1988).
  9. J. Shen, D. J. Green, R. E. Tressler, and D. L. Shelleman, J. Non-Cryst. Solids, 324, 277 (2003). [DOI: https://doi.org/10.1016/S0022-3093(03)00260-6] https://doi.org/10.1016/S0022-3093(03)00260-6
  10. A. Chimanski, P. F. Cesar, C. Fredericci, and H. N. Yoshimura, ram. Int., 41, 10000 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.04.082]
  11. P. Hrma and S. S. Han, J. Non-Cryst. Solids, 358, 1818 (2012). [DOI: https://doi.org/10.1016/j.jnoncrysol.2012.05.030] https://doi.org/10.1016/j.jnoncrysol.2012.05.030
  12. B. Y. Lee and Y. C. Kim, J. Korean Acad.-Ind. Coop. Soc., 15, 3990 (2014). [DOI: https://doi.org/10.5762/KAIS.2014.15.6.3990]
  13. Z. Liang and H. L. Williams, J. Appl. Polym. Sci., 44, 699 (1992). [DOI: https://doi.org/10.1002/app.1992.070440417] https://doi.org/10.1002/app.1992.070440417
  14. H. M. Laun, Colloid Polym. Sci., 262, 257 (1984). [DOI: https://doi.org/10.1007/BF01410464] https://doi.org/10.1007/BF01410464
  15. S. E. Barbosa and J. M. Kenny, J. Vinyl Addit. Technol., 1, 269 (1995). [DOI: https://doi.org/10.1002/vnl.730010415] https://doi.org/10.1002/vnl.730010415
  16. R. S. Stone, P. N. Brett, and B. S. Evans, Mechatronics, 8, 85 (1998). [DOI: https://doi.org/10.1016/S0957-4158(97)00042-1] https://doi.org/10.1016/S0957-4158(97)00042-1
  17. J. S. Lee, S. W. Kim, Y. H. Ra, T. Y. Lim, Y. J. Lee, D. W. Jeon, and J. H. Kim, Korean J. Mater. Res., 28, 763 (2018). [DOI: https://doi.org/10.3740/MRSK.2018.28.12.763] https://doi.org/10.3740/MRSK.2018.28.12.763
  18. Q. Zheng and J. C. Mauro, J. Am. Ceram. Soc., 100, 6 (2017). [DOI: https://doi.org/10.1111/jace.14678] https://doi.org/10.1111/jace.14678
  19. M. C. Weinberg, J. Am. Ceram. Soc., 74, 1905 (1991). [DOI: https://doi.org/10.1111/j.1151-2916.1991.tb07807.x] https://doi.org/10.1111/j.1151-2916.1991.tb07807.x
  20. C. S. Ray, X. Fang, and D. E. Day, J. Am. Ceram. Soc., 83, 865 (2000). [DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01287.x]
  21. T. S. Kim, D. S. Kil, H. S. June, E. H. Kang, and S. S. Yoon, Anal. Sci. Technol., 13, 775 (2000).
  22. T. G. Mezger, Applied Rheology (Anton Paar GmbH, Austria, 2014) p. 137.