Synthesis of Size Controlled Gold Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) Effect

크기가 조절된 골드 나노 입자의 합성과 표면 라만 증강의 효과

  • Lee, Young Wook (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 이영욱 (한국세라믹기술원 에너지환경본부) ;
  • 신태호 (한국세라믹기술원 에너지환경본부)
  • Received : 2019.09.17
  • Accepted : 2019.09.26
  • Published : 2019.11.01


Nanoscale gold particles have been intensively researched due to their potential applications in catalysis, electronics, plasmonics, and biological assays. In our study, we fabricated gold nanoparticles (NPs) that were synthesized in an aqueous environment via the reduction of $HAuCl_4$ by ascorbic acid (AC) with a sodium citrate (SC) surfactant. Highly monodispersed gold particles with sizes ranging from 123 to 184 nm were prepared in high-yield by a surfactant concentration. The structural and optical properties of the synthesized gold nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. The prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties that were dependent on their on size.


Supported by : Ministry or Trade, Industry & Energy(MI), Korea Institute of Energy Technology Evaluation and Planning (KETEP)


  1. A. X. Yin, X. Q. Min, Y. W. Zhang, and C. H, Yan, J. Am. Chem. Soc., 133, 3816 (2011). [DOI:]
  2. A. Tao, P. Sinsermsuksakul, and P. Yang, Nat. Nanotechnol., 2, 435 (2007). [DOI:]
  3. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic, Science, 315, 493 (2007). [DOI: https:///]
  4. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004). [DOI:]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003). [DOI:]
  6. M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, Chem. Rev., 111, 3736 (2011). [DOI:]
  7. J. W. Hong, S. U. Lee, Y. W. Lee, and S. W. Han, J. Am. Chem. Soc., 134, 4565 (2012). [DOI:]
  8. S. Lee, J. W. Hong, S. U. Lee, Y. W. Lee, and S. W. Han, Chem. Commun., 51, 8793 (2015). [DOI:]
  9. H. I. Park, S. Lee, J. M. Lee, S. A. Nam, T. Jeon, S. W. Han, and S. O. Kim, ACS Nano, 8, 10305 (2014). [DOI:]
  10. R. Narayanan and M. A. El-Sayed, Nano Lett., 4, 1343 (2004). [DOI:]
  11. Y. L. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009). [DOI:]
  12. P. V. Kamat, J. Phys. Chem. B, 106, 7729 (2002). [DOI:]
  13. M. L. Personick, M. R. Langille, J. Zhang, N. Harris, G. C. Schatz, and C. A. Mirkin, J. Am. Chem. Soc., 133, 6170 (2011). [DOI:]
  14. X. Huang, S. Tang, J. Yang, Y. Tan, and N. Zheng, J. Am. Chem. Soc., 133, 15946 (2011). [DOI:]
  15. C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos, and P. G. Schultz, Angew. Chem. Int. Ed., 38, 1808 (1999). [DOI:<1808::AID-ANIE1808>3.0.CO;2-C]
  16. K. Kwon, K. Y. Lee, M. Kim, Y. W. Lee, J. Heo, S. J. Ahn, and S. W. Han, Chem. Phys. Lett., 432, 209 (2006). [DOI:]
  17. K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, and S. W. Han, J. Phys. Chem. C, 111, 1161 (2007). [DOI:]
  18. R. K. Chang and T. E. Furtak, Surface Enhanced Raman Scattering, Plenum Press, New York, 243 (1982).
  19. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005). [DOI:]
  20. Y. Xia and N. J. Halas, MRS Bull., 30, 338 (2005). [DOI:]
  21. Y. Piao, Y. Jang, M. Shokouhimehr, I. S. Lee, and T. Hyeon, Small, 3, 255 (2007). [DOI:]
  22. N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir, 17, 6782 (2001). [DOI:]
  23. X. Zhou, F. Zhou, H. Liu, L. Yang, and J. Liu, Analyst, 138, 5832 (2013). [DOI:]