DOI QR코드

DOI QR Code

Synthesis of Size-Controlled Urchin Ag Nanoparticles and Surfcace Enhanced Raman Spectroscopy (SERS)

크기가 조절된 성게 모양의 실버나노 입자의 합성과 표면 라만 증강

  • Lee, Young Wook (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 이영욱 (한국세라믹기술원 에너지환경본부) ;
  • 신태호 (한국세라믹기술원 에너지환경본부)
  • Received : 2019.08.02
  • Accepted : 2019.08.09
  • Published : 2019.11.01

Abstract

Controlling the shape of Ag nanoparticles (NPs) is very difficult. In the present work, urchin Ag NPs with different sizes and pod length control have been synthesized successfully in high yield by the concentration of a reducing agent. Unique Ag NPs were observed by TEM and SEM. These nanocrystals exhibit tunable surface plasmon resonance properties from the visible to near-infrared regions. They were applied to surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G (R6G), benzenethiol (BT), and 4-amino benznethiol (4-ABT) molecules. The enhanced local field effect due to the sharp pod length, size, and surface plasmon of the urchin Ag NPs resulted in enhanced SERS properties and can serve as high-sensitivity substrates for SERS measurements.

Acknowledgement

Supported by : ministry or trade, industry & energy(MI), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. Y.W. Cao, R. Jin, and C. A. Mirkin, Science, 297, 1536 (2002). [DOI: https://doi.org/10.1126/science.297.5586.1536] https://doi.org/10.1126/science.297.5586.1536
  2. Y. Zheng and W. Aiqin, J. Mater. Chem., 22, 16552 (2012). [DOI: https://doi.org/10.1039/C2JM32774K] https://doi.org/10.1039/c2jm32774k
  3. N. Pradhan, A. Pal, and T. Pal, Langmuir, 17, 1800 (2001). [DOI: https://doi.org/10.1021/la000862d] https://doi.org/10.1021/la000862d
  4. W. Ren, Y. Fang, and E. Wang, ACS Nano, 5, 6425 (2011). [DOI: https://doi.org/10.1021/nn201606r] https://doi.org/10.1021/nn201606r
  5. T. K. Sau and C. J. Murphy, J. Am. Chem. Soc., 126, 8648 (2004). [DOI: https://doi.org/10.1021/ja047846d] https://doi.org/10.1021/ja047846d
  6. H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch, Anal. Chem., 86, 1525 (2014). [DOI: https://doi.org/10.1021/ac402935p] https://doi.org/10.1021/ac402935p
  7. S. Mondal, U. Rana, and S. Malik, ACS Appl. Mater. Interfaces, 7, 10457 (2015). [DOI: https://doi.org/10.1021/acsami.5b01806] https://doi.org/10.1021/acsami.5b01806
  8. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, Chem. Eur. J., 11, 454 (2005). [DOI: https://doi.org/10.1002/chem.200400927] https://doi.org/10.1002/chem.200400927
  9. Y. Xiong and Y. Xia, Adv. Mater., 19, 3385 (2007). [DOI: https://doi.org/10.1002/adma.200701301] https://doi.org/10.1002/adma.200701301
  10. J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang, and J. R. Lombardi, Langmuir, 24, 10407 (2008). [DOI: https://doi.org/10.1021/10.1002/adma.200701301] https://doi.org/10.1021/la800961j
  11. T.T.B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, J. Mater. Chem. B, 2, 629 (2014). [DOI: https://doi.org/10.1039/C3TB21278E] https://doi.org/10.1039/C3TB21278E
  12. K. Kim, K. L. Kim, D. Shin, J. Y. Choi, and K. S. Shin, J. Phys. Chem. C, 116, 4774 (2012). [DOI: https://doi.org/10.1021/jp211730r] https://doi.org/10.1021/jp211730r