Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure

자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포

  • Yoon, Hye Ryeon (Department of Materials Science and Engineering, Hanbat National University) ;
  • Park, Young Sam (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Seung-Yun (Department of Materials Science and Engineering, Hanbat National University)
  • 윤혜련 (한밭대학교 신소재공학과) ;
  • 박영삼 (한국전자통신연구원(ETRI) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2019.08.07
  • Accepted : 2019.09.11
  • Published : 2019.11.01


This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.


  1. Y. Saito, S. Hatayama, Y. Shuang, S. Shindo, P. Fons, A. V. Kolobov, K. Kobayashi, and Y. Sutou, Appl. Phys. Express, 12, 051008 (2019). [DOI:]
  2. S. J. Baik, G. Kim, H. Horii, and D. H. Ahn, Phys. Status Solidi A, 1900196 (2019). [DOI:]
  3. Y. Shi, C. Sturm, and H. Kleinke, J. Solid State Chem., 270, 273 (2019). [DOI:]
  4. M.A.A. Noman, M. J. Abden, and M. A. Islam, 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) (IEEE, Rajshahi, Bangladesh, 2018) p. 1. [DOI:]
  5. Z. Wu, G. Zhang, Y. Park, S. D. Kang, H. K. Lyeo, D. S. Jeong, J. H. Jeong, K. No, and B. K. Cheong, Appl. Phys. Lett., 99, 143505 (2011). [DOI:]
  6. K. S. Bang, Y. J. Oh, and S. Y. Lee, J. Electron. Mater., 44, 2712 (2015). [DOI:]
  7. S. M. Yoon, N. Y. Lee, S. O. Ryu, K. J. Choi, Y. S. Park, S. Y. Lee, B. G. Yu, M. J. Kang, S. Y. Choi, and M. Wuttig, IEEE Electron Device Lett., 27, 445 (2006). [DOI:]
  8. S. Y. Lee, S. M. Yoon, Y. S. Park, B. G. Yu, S. H. Kim, and S. H. Lee, J. Vac. Sci. Technol. B, 25, 1244 (2007). [DOI:]
  9. C. Xu, Z. Song, B. Liu, S. Feng, and B. Chen, Appl. Phys. Lett., 92, 062103 (2008). [DOI:]
  10. G. Atwood and R. Bez, 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), (IEEE, Hsinchu, Taiwan, 2007) p. 1. [DOI:]
  11. S. Y. Lee, S. Jung, S. M. Yoon, and Y. S. Park, Jpn. J. Appl. Phys., 50, 06GH03 (2011). [DOI:]
  12. H. K. Choi, N. W. Jang, H. S. Kim, S. H. Lee, and D. Y. Yi, Journal of the Korean Society of Marine Engineering, 33, 131 (2009). [DOI:]
  13. Ioffe Institute,
  14. S. Y. Lee, K. J. Choi, S. O. Ryu, S. M. Yoon, N. Y. Lee, Y. S. Park, S. H. Kim, S. H. Lee, and B. G. Yu, Appl. Phys. Lett., 89, 053517 (2006). [DOI:]
  15. D. Campi, L. Paulatto, G. Fugallo, F. Mauri, and M. Bernasconi, Phys. Rev. B, 95, 024311 (2017). [DOI:]
  16. J. E. Boschker, X. Lu, V. Bragaglia, R. Wang, H. T. Grahn, and R. Calarco, Sci. Rep., 8, 5889 (2018). [DOI:]
  17. E. K. Lee and S. Y. Lee, Jpn. J. Appl. Phys., 57, 081201 (2018). [DOI:]
  18. D. Adler, J. Vac. Sci. Technol., 10, 728 (1973). [DOI:]
  19. S. K. Pal, N. Chandel, and N. Mehta, Dalton Trans., 48, 4719 (2019). [DOI:]
  20. S. M. Yoon, K. J. Choi, N. Y. Lee, S. Y. Lee, Y. S. Park, and B. G. Yu, Appl. Surf. Sci., 254, 316 (2007). [DOI:]