DOI QR코드

DOI QR Code

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery

기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향

  • Kim, Jong Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Xiao, Cheng-Fan (Department of Materials Science and Engineering, Chungnam National University) ;
  • Go, Kwangmo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Kyung Jin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 김종헌 (충남대학교 신소재공학과) ;
  • 소승범 (충남대학교 신소재공학과) ;
  • 고광모 (충남대학교 응용화학공학과) ;
  • 이경진 (충남대학교 응용화학공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Received : 2019.07.21
  • Accepted : 2019.08.15
  • Published : 2019.11.01

Abstract

All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Acknowledgement

Supported by : Chungnam National University

References

  1. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). [DOI: https://doi.org/10.1038/35104644] https://doi.org/10.1038/35104644
  2. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev., 111, 3577 (2011). [DOI: https://doi.org/10.1021/cr100290v] https://doi.org/10.1021/cr100290v
  3. J. B. Goodenough and Y. Kim, Chem. Mater., 22, 587 (2010). [DOI: https://doi.org/10.1021/cm901452z] https://doi.org/10.1021/cm901452z
  4. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, Solid State Ionics, 135, 33 (2000). [DOI: https://doi.org/10.1016/S0167-2738(00)00327-1] https://doi.org/10.1016/S0167-2738(00)00327-1
  5. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki, Adv. Mater., 18, 2226 (2006). [DOI: https://doi.org/10.1002/adma.200502604] https://doi.org/10.1002/adma.200502604
  6. J. H. Woo, J. E. Trevey, A. S. Cavanagh, Y. S. Choi, S. C. Kim, S. M. George, K. H. Oh, and S. H. Lee, J. Electrochem. Soc., 159, A1120 (2012). [DOI: https://doi.org/10.1149/2.085207jes] https://doi.org/10.1149/2.085207jes
  7. K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C.A.J. Fisher, K. Nonaka, Y. Sugita, and Z. Ogumi, Angew. Chem. Int. Ed., 49, 4414 (2010). [DOI: https://doi.org/10.1002/anie.200907319] https://doi.org/10.1002/anie.200907319
  8. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, Nano Energy, 33, 363 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.01.028] https://doi.org/10.1016/j.nanoen.2017.01.028
  9. L. Li, S. Liu, H. Zhou, Q. Lei, and K. Qian, Mater. Lett., 216, 135 (2018). [DOI: https://doi.org/10.1016/j.matlet.2017.12.131] https://doi.org/10.1016/j.matlet.2017.12.131
  10. J. W. Park, S. Rajendran, and H. S. Kwon, J. Power Sources, 159, 1409 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2005.11.064] https://doi.org/10.1016/j.jpowsour.2005.11.064
  11. H. Xia, L. Lu, and G. Ceder, J. Alloys Compd., 417, 304 (2006). [DOI: https://doi.org/10.1016/j.jallcom.2005.09.065] https://doi.org/10.1016/j.jallcom.2005.09.065
  12. J. H. Kim, J. Park, K. Park, S. H. Cho, Y. C. Park, C. Kim, I. D. Kim, K. Park, and H. S. Kim, J. Electroceram., 42, 104 (2019). [DOI: https://doi.org/10.1007/s10832-018-0168-4] https://doi.org/10.1007/s10832-018-0168-4
  13. J. H. Kim, J. Park, J. Y. Cheong, A. Song, K. B. Chung, Y. C. Park, I. D. Kim, Y. J. Kim, K. Park, and H. S. Kim, Ceram. Int., 44, 20093 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.07.284] https://doi.org/10.1016/j.ceramint.2018.07.284
  14. C. F. Xiao, J. H. Kim, D. Choi, Y. C. Park, J. H. Kim, J. Park, Y. J. Kim, and H. S. Kim, J. Alloys Compd., 801, 550 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.06.151] https://doi.org/10.1016/j.jallcom.2019.06.151
  15. C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, Inorg. Chem., 50, 1089 (2011). [DOI: https://doi.org/10.1021/ic101914e] https://doi.org/10.1021/ic101914e
  16. I. Seo and S. W. Martin, Inorg. Chem., 50, 2143 (2011). [DOI: https://doi.org/10.1021/ic101448m] https://doi.org/10.1021/ic101448m
  17. Y. Hamon, A. Douard, F. Sabary, C. Marcel, P. Vinatier, B. Pecquenard, and A. Levasseur, Solid State Ionics, 177, 257 (2006). [DOI: https://doi.org/10.1016/j.ssi.2005.10.021] https://doi.org/10.1016/j.ssi.2005.10.021
  18. B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, and A. Levasseur, Solid State Ionics, 186, 29 (2011). [DOI: https://doi.org/10.1016/j.ssi.2011.01.006] https://doi.org/10.1016/j.ssi.2011.01.006
  19. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, Sci. Adv., 4, 9245 (2018). [DOI: https://doi.org/10.1126/sciadv.aau9245] https://doi.org/10.1126/sciadv.aau9245