High-pressure Air Impulse Technique for Rehabilitating Well and Its Application to a Riverbank Filtration Site in Korea

  • Received : 2019.10.04
  • Accepted : 2019.10.23
  • Published : 2019.10.31


Rehabilitation work is required to increase well productivity, which decreases with the elapsed time of pumping owing to the clogging of the water well. Clogging causes not only a reduction in the well productivity but also a deterioration of the water quality. For unclogging and rehabilitating wells, several techniques are used such as brushing, air surging, surge blocks, and gas impulse. In this study, the high-pressure air impulse technique, which effectively and economically rehabilitates wells, was applied to a riverbank filtration site in Korea for the same objective. At most of the wells, the hydraulic parameters (transmissivity, storage coefficient, and specific capacity) were increased by the application of the high-pressure air impulse technique. The well loss change values also indicate an increase in the hydraulic parameters by the air impulse implementation. Thus, the high-pressure air impulse technique can be efficiently and economically applied to water and riverbank filtration wells for rehabilitating the decreased productivity.


Supported by : National Research Foundation of Korea (NRF)


  1. Appelo, C. A. J., Postma, D., 1996, Geochemistry, groundwater and pollution, A.A. Blkema, Rotterdam, 535.
  2. Bierschenk, W. H., 1963, Determining well efficiency by multiple step-drawdown tests, Intl. Assoc. Scientific Hydrol., 64, 493-507.
  3. Choo, C. O., Hamm, S. Y., Lee, J. H., Ok, S. I., Cha, E. J., Han, S. J., Kim, M. J., Cho, H. N., 2012, Characterization and formation mechanisms of clogging materials in groundwater wells, the Mt. Geumjeong area, Busan, Korea, The J. Eng. Geol., 22(1), 67-81.
  4. Driscoll, F. G., 1989, Groundwater and Well, Johnson, St. Paul, MN.
  5. Hantush, M. S., 1960, Modification of the theory of leaky aquifers, J. Geophys. Res., 65(11), 3713-3725.
  6. Hantush, M. S., 1964, Hydraulics of wells, In: Chow, V.T. (Ed.), Advances in Hydroscience, 1, 281-232.
  7. Houben, G., 2003, Iron oxide incrustations in wells. Part 1: Genesis, mineralogy and geochemistry, Applied Geochemi., 18(6), 927-939.
  8. Houben, G., Treskatis, C., 2007, Water Well Rehabilitation and Reconstruction, McGraw-Hill Companies Inc., 606.
  9. Houben, G., Merten, S., Treskatis, C., 1999, Entstehung, Aufbau und Alterung von Brunneninkrustationen, bbr, 50(10), 29-35.
  10. Howsam, P., Hollamby, R., 1990, Drilling fluid invasion and permeability impairment in granular formation, Quaternary J. Eng. Geol., 23, 161-168.
  11. Hurst, W., Clark, J. D., Brauer, E. B., 1969, The skin effect in producing wells, J. Petroleum Technol., 21, 1483-1489.
  12. Kim, G. B., Kim, B. W., Shin, S. H., Park, J. H., 2009, Iron and manganese removal through well development at river bank filtration site, J. Eng. Geol., 19(3), 389-400.
  13. Lee, J. H., Hamm, S. Y., Han, S. J., Ok, S. I., Cha, E. J., Cho, H. N., Choo, C. O., Kim, M. J., 2011, Verifying rehabilitation and evaluation of bedrock wells using air-brush surging and explosive methods, J. Eng. Geol., 21(4), 369-379.
  14. Lee, M. J., Park, J. H., Kim, G. B., 2012, In situ iron-manganese removal by the oxygenized water injection at the river bank filtration site, J. Geo. Soc. Korea, 48(6), 503-519.
  15. Maogong, F., 1988, The applications of vyredox method regarding iron removal from ground water in China, Ground Water, 26 (5), 647-648.
  16. McLaughlan, R. G., Knight, M. J., Stuertz, R. M., 1993, Fouling and corrosion of groundwater wells-a research study, Research Publication NCGM, 1/93, Sydney, UTS-NCGM.
  17. McDowell-Boyer, L. M., Hunt, J. R., Sitar, N., 1986, Particle transport in porous media, Water Resour. Res., 22(13), 1901-1921.
  18. Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., von Gunten, U., 2001, Characterization of iron and manganese precipitates from an in situ ground water treatment plant, Ground Water, 39(6), 921-930.
  19. Muckenthaler, P., 1989, Erganzende Modellvorstellungen Fur Erosions- Und Suffosion kriterien, Wasserwirtschaft, 79(7/8), 405-09.
  20. Prins, J., 2003, Suspended Material in Abstracted Groundwater in the Netherland, First Result, KIWA Rep., KWR 03.029, Nieuwegein, The Netherlands, KIWA.
  21. Saucier, R. J., 1974, Considerations in gravel pack design, J. Petroleum Technol., 26(2), 205-212.
  22. Smith, S. A., 1995, Monitoring and Remediation Wells-Problem Prevention, Maintenance, and Rehabilitation, BocaRaton, FL, Lewis, 80.
  23. Timmer, H., Verdel, J. D., Jongmans, A. G., 2003, Well clogging by particles in Dutch well fields, J. America, Water Works Assoc., 95(8), 122-118.
  24. Van Beek, C. G. E. M., Breedveld, R. J. M., Huhasz-Holterman, M., Oosterhof, A., Stuyfzand, P. J., 2009, Cause and prevention of well bore clogging by particles, Hydrogeology J., 17, 1877-1886.
  25. Walter, D. A., 1997, Geochemistry and microbiology of iron-related well-screen encrustation and aquifer biofouling in Suffolk county, Long Island, New York, USGS Water Resources Invest. Rep., 97-4032.
  26. Weiss, W. J., Bouwer, E. J., Aboytes, R., LeChevallierc, M. W., O'Melia, C. R., Le, B. T., Schwab, K. J., 2005, Riverbank filtration for control of microorganisms: Results from field monitoring, Water Res., 39, 1990-2001.