DOI QR코드

DOI QR Code

Molecular Characterization of Two Marine Tintinnids (Ciliophora, Spirotrichea, Tintinnidae) Using Six Genes

  • Moon, Ji Hye (Department of Biology, Gangneung-Wonju National University) ;
  • Omar, Atef (Natural Science Research Institute, Gangneung-Wonju National University) ;
  • Quintela-Alonso, Pablo (Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid) ;
  • Jung, Jae-Ho (Department of Biology, Gangneung-Wonju National University)
  • Received : 2019.07.03
  • Accepted : 2019.07.15
  • Published : 2019.10.31

Abstract

DNA barcoding of two marine tintinnids, Eutintinnus rectus and Schmidingerella arcuata, was performed using four samples collected from different sites in the north-eastern coast of South Korea. The loricae morphology was observed by light and scanning electron microscopy. Molecular data were analyzed using five nuclear ribosomal DNA markers(18S, ITS1, 5.8S, ITS2, and 28S genes) and one mitochondrial marker (CO1 gene). The intraspecific pairwise differences of E. rectus and S. arcuata in the CO1 gene were 0.0-0.2% and 0.0-0.6%, respectively, while there were no differences in the 18S rDNA sequences.

Acknowledgement

Supported by : Korea Institute of Marine Science and Technology Promotion (KIMST)

References

  1. Agatha S, Struder-Kypke MC, 2012. Reconciling cladistic and genetic analyses in choreotrichid ciliates (Ciliophora, Spirotricha, Oligotrichea). Journal of Eukaryotic Microbiology, 59:325-350. https://doi.org/10.1111/j.1550-7408.2012.00623.x https://doi.org/10.1111/j.1550-7408.2012.00623.x
  2. Bachvaroff TR, Kim S, Guillou L, Delwiche CF, Coats DW, 2012. Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Applied and Environmental Microbiology, 78:334-345. https://doi.org/10.1128/AEM.06678-11 https://doi.org/10.1128/AEM.06678-11
  3. Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41:95-98.
  4. Jung JH, Moon JH, Park KM, Kim S, Dolan JR, Yang EJ, 2018. Novel insights into the genetic diversity of Parafavella based on mitochondrial CO1 sequences. Zoologica Scripta, 47:743-755. https://doi.org/10.1111/zsc.12312 https://doi.org/10.1111/zsc.12312
  5. Kim SY, Yang EJ, Gong J, Choi JK, 2010. Redescription of Favella ehrenbergii (Claparede and Lachmann, 1858) Jorgensen, 1924 (Ciliophora: Choreotrichia), with phylogenetic analyses based on small subunit rRNA gene sequences. Journal of Eukaryotic Microbiology, 57:460-467. https://doi.org/10.1111/j.1550-7408.2010.00500.x https://doi.org/10.1111/j.1550-7408.2010.00500.x
  6. Kim YO, Choi JM, 2016. 20. Tintinniids. In: Protists of Korea. Vol. 3 (Ed., Korean Society of Protistologists). Haksul Information Center, Seoul, pp. 2-68 (in Korean).
  7. Kim YO, Shin K, Jang PG, Choi HW, Noh JH, Yang EJ, Kim E, Jeon D, 2012. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Science Journal, 47:161-172. https://doi.org/10.1007/s12601-012-0016-4 https://doi.org/10.1007/s12601-012-0016-4
  8. Lynn DH, 2008. The ciliated protozoa: characterization, classification, and guide to the literature. Springer, New York, pp. 1-605.
  9. Lynn DH, Struder-Kypke MC, 2006. Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. Journal of Eukaryotic Microbiology, 53:385-387. https://doi.org/10.1111/j.1550-7408.2006.00116.x https://doi.org/10.1111/j.1550-7408.2006.00116.x
  10. Nei M, Kumar S, 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, pp. 1-333.
  11. Nguyen NH, Smith D, Peay K, Kennedy P, 2015. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 205:1389-1393. https://doi.org/10.1111/nph.12923 https://doi.org/10.1111/nph.12923
  12. Park MH, Jung JH, Jo E, Park KM, Baek YS, Kim SJ, Min GS, 2019. Utility of mitochondrial CO1 sequences for species discrimination of Spirotrichea ciliates (Protozoa, Ciliophora). Mitochondrial DNA Part A, 30:148-155. https://doi.org/10.1080/24701394.2018.1464563 https://doi.org/10.1080/24701394.2018.1464563
  13. Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirku M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukes J, Mann DG, Mitchell EAD, Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, de Vargas C, 2012. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology, 10:e1001419. https://doi.org/10.1371/journal.pbio.1001419 https://doi.org/10.1371/journal.pbio.1001419
  14. Quintela-Alonso P, Nitsche F, Wylezich C, Arndt H, Foissner W, 2013. A new Tetrahymena (Ciliophora, Oligohymenophorea) from groundwater of Cape Town, South Africa. Journal of Eukaryotic Microbiology, 60:235-246. https://doi.org/10.1111/jeu.12021 https://doi.org/10.1111/jeu.12021
  15. Rakshit D, Sahu G, Mohanty AK, Satpathy KK, Jonathan MP, Murugan K, Sarkar SK, 2017. Bioindicator role of tintinnid (Protozoa: Ciliophora) for water quality monitoring in Kalpakkam, Tamil Nadu, south east coast of India. Marine Pollution Bulletin, 114:134-143. https://doi.org/10.1016/j.marpolbul.2016.08.058 https://doi.org/10.1016/j.marpolbul.2016.08.058
  16. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61:539-542. https://doi.org/10.1093/sysbio/sys029 https://doi.org/10.1093/sysbio/sys029
  17. Santoferrara LF, Tian M, Alder VA, McManus GB, 2015. Discrimination of closely related species in tintinnid ciliates: new insights on crypticity and polymorphism in the genus Helicostomella. Protist, 166:78-92. https://doi.org/10.1016/j.protis.2014.11.005 https://doi.org/10.1016/j.protis.2014.11.005
  18. Snoeyenbos-West OLO, Salcedo T, McManus GB, Katz LA, 2002. Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. International Journal of Systematic and Evolutionary Microbiology, 52:1901-1913. https://doi.org/10.1099/00207713-52-5-1901 https://doi.org/10.1099/00207713-52-5-1901
  19. Sonnenberg R, Nolte AW, Tautz D, 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology, 4:6. https://doi.org/10.1186/1742-9994-4-6 https://doi.org/10.1186/1742-9994-4-6
  20. Stoeck T, Przybos E, Dunthorn M, 2014. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates. Molecular Ecology Resources, 14:458-468. https://doi.org/10.1111/1755-0998.12195 https://doi.org/10.1111/1755-0998.12195
  21. Stoecker DK, Capuzzo JM, 1990. Predation on protozoa: its importance to zooplankton. Journal of Plankton Research, 12:891-908. https://doi.org/10.1093/plankt/12.5.891 https://doi.org/10.1093/plankt/12.5.891
  22. Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S, 2012. Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America, 109:19333-19338. https://doi.org/10.1073/pnas.1213199109 https://doi.org/10.1073/pnas.1213199109
  23. Yoo KI, Kim Y-O, 1990. Taxonomical studies on tintinnids (Protozoa: Ciliata) in Korean coastal waters 2. Yongil Bay. Korean Journal of Systematic Zoology, 6:87-121.
  24. Zhang Q, Agatha S, Zhang W, Dong J, Yu Y, Jiao N, Gong J, 2017. Three rDNA loci-based phylogenies of tintinnid ciliates (Ciliophora, Spirotrichea, Choreotrichida). Journal of Eukaryotic Microbiology, 64:226-241. https://doi.org/10.1111/jeu.12354 https://doi.org/10.1111/jeu.12354