DOI QR코드

DOI QR Code

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi (School of Mechanical Engineering, SASTRA Deemed University) ;
  • Hariharan, S.S. (School of Mechanical Engineering, SASTRA Deemed University)
  • Received : 2019.05.18
  • Accepted : 2019.10.06
  • Published : 2019.10.25

Abstract

The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

References

  1. AL-Oqla, F.M. and Salit, M.S. (2017), Natural Fiber Composites, Materials Selection for Natural Fiber Composites, Woodhead Publishing, pp. 23-48. https://doi.org/10.1016/B978-0-08-100958-1.00002-5
  2. Bambach, M.R. (2017), "Compression strength of natural fibre composite plates and sections of flax, jute and hemp", Thin-Wall. Struct., 119, 103-113. https://doi.org/10.1016/J.TWS.2017.05.034 https://doi.org/10.1016/j.tws.2017.05.034
  3. Barbero, E.J. (2017), Introduction to Composite Materials Design, (Third Edition), CRC Press. https://doi.org/10.1201/9781315296494
  4. Belaadi, A., Bezazi, A., Maache, M. and Scarpa, F. (2014), "Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation", Procedia Eng., 74, 325-328. https://doi.org/10.1016/j.proeng.2014.06.272 https://doi.org/10.1016/j.proeng.2014.06.272
  5. de Souza Castoldi, R., de Souza, L.M.S. and de Andrade Silva, F. (2019), "Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes", Constr. Build. Mater., 211, 617-628. 10.1016/j.conbuildmat.2019.03.282 https://doi.org/10.1016/j.conbuildmat.2019.03.282
  6. Daniel, I.M., Ishai, O., Daniel, I.M. and Daniel, I. (2006), Engineering Mechanics of Composite Materials, (2nd Ed.), Oxford University Press, Inc. http://www.oup.com
  7. Ding, F.X., Sheng, S.J., Yu, Y.J. and Yu, Z.W. (2019), "Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion", Steel Compos. Struct., Int. J., 31(3), 291-301. https://doi.org/10.12989/scs.2019.31.3.291
  8. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093 https://doi.org/10.21474/IJAR01/7340
  9. Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201 https://doi.org/10.21474/IJAR01/7662
  10. Elanchezhian, C., Ramnath, B.V., Ramakrishnan, G., Rajendrakumar, M., Naveenkumar, V. and Saravanakumar, M.K. (2018), "Review on mechanical properties of natural fiber composites", Mater. Today: Proceedings, 5(1), 1785-1790. https://doi.org/10.1016/j.matpr.2017.11.276 https://doi.org/10.1016/j.matpr.2017.11.276
  11. Gupta, M.K. and Srivastava, R.K. (2014), "Tensile and flexural properties of sisal fibre reinforced epoxy composite: A comparison between unidirectional and mat form of fibres", Procedia Mater. Sci., 5, 2434-2439. https://doi.org/10.1016/j.mspro.2014.07.489 https://doi.org/10.1016/j.mspro.2014.07.489
  12. Gupta, M.K. and Srivastava, R.K. (2015), "Effect of sisal fibre loading on dynamic mechanical analysis and water absorption behaviour of jute fibre epoxy composite", Mater. Today: Proceedings, 2(4-5), 2909-2917. https://doi.org/10.1016/j.matpr.2015.07.253 https://doi.org/10.1016/j.matpr.2015.07.253
  13. Han, Q.H., Yang, G., Xu, J. and Wang, Y.H. (2017), "Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM", Steel Compos. Struct., Int. J., 25(1), 57-65. https://doi.org/10.12989/scs.2017.25.1.057
  14. Jones, R.M. (1999), Mechanics of Composite Materials, (2nd Ed.), CRC Press.
  15. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
  16. Maurya, H.O., Gupta, M.K., Srivastava, R.K. and Singh, H. (2015), "Study on the mechanical properties of epoxy composite using short sisal fibre", Mater. Today: Proceedings, 2(4-5), 1347-1355. https://doi.org/10.1016/j.matpr.2015.07.053. https://doi.org/10.1016/j.matpr.2015.07.053
  17. Mustafa, S.A. (2018), "Experimental and FE investigation of repairing deficient square CFST beams using FRP", Steel Compos. Struct., Int. J., 29(2), 187-200. https://doi.org/10.12989/scs.2018.29.2.187
  18. Prasad, G.E., Gowda, B.K. and Velmurugan, R. (2017), "Comparative study of impact strength characteristics of treated and untreated sisal polyester composites", Procedia Eng., 173, 778-785. https://doi.org/10.1016/j.proeng.2016.12.096 https://doi.org/10.1016/j.proeng.2016.12.096
  19. Rajesh, M., Pitchaimani, J. and Rajini, N. (2016), "Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam", Procedia Eng., 144, 1055-1059. https://doi.org/10.1016/j.proeng.2016.05.056 https://doi.org/10.1016/j.proeng.2016.05.056
  20. Singh, N.P., Aggarwal, L. and Gupta, V.K. (2015), "Tensile behavior of sisal/hemp reinforced high density polyethylene hybrid composite", Mater. Today: Proceedings, 2(4-5), 3140-3148. https://doi.org/10.1016/j.matpr.2015.07.102 https://doi.org/10.1016/j.matpr.2015.07.102
  21. Sood, M. and Dwivedi, G. (2018), "Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review", Egyptian J. Petrol., 27(4), 775-783. https://doi.org/10.1016/j.ejpe.2017.11.005 https://doi.org/10.1016/j.ejpe.2017.11.005
  22. Sood, M., Dharmpal, D. and Gupta, V.K. (2015), "Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite", Mater. Today: Proceedings, 2(4-5), 3149-3155. https://doi.org/10.1016/j.matpr.2015.07.103 https://doi.org/10.1016/j.matpr.2015.07.103
  23. Sreehari, V.M., Kumar, B.R. and Maiti, D.K. (2017), "Structural Analysis Using Shear Deformation Theories Having Nonpolynomial Nature: A Review", Int. J. Appl. Eng. Res., 12(20), 10389-10396.
  24. Srisuwan, S., Prasoetsopha, N., Suppakarn, N. and Chumsamrong, P. (2014), "The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin", Energy Procedia, 56, 19-25. https://doi.org/10.1016/j.egypro.2014.07.127. https://doi.org/10.1016/j.egypro.2014.07.127
  25. Tuhta, S. (2018), "GFRP retrofitting effect on the dynamic characteristics of model steel structure", Steel Compos. Struct., Int. J., 28(2), 223-231. https://doi.org/1012989/SCS.2018.28.2.223