A new empirical formula for prediction of the axial compression capacity of CCFT columns

  • Tran, Viet-Linh (Department of Civil and Environmental Engineering, Sejong University) ;
  • Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2018.12.27
  • Accepted : 2019.09.30
  • Published : 2019.10.25


This paper presents an efficient approach to generate a new empirical formula to predict the axial compression capacity (ACC) of circular concrete-filled tube (CCFT) columns using the artificial neural network (ANN). A total of 258 test results extracted from the literature were used to develop the ANN models. The ANN model having the highest correlation coefficient (R) and the lowest mean square error (MSE) was determined as the best model. Stability analysis, sensitivity analysis, and a parametric study were carried out to estimate the stability of the ANN model and to investigate the main contributing factors on the ACC of CCFT columns. Stability analysis revealed that the ANN model was more stable than several existing formulae. Whereas, the sensitivity analysis and parametric study showed that the outer diameter of the steel tube was the most sensitive parameter. Additionally, using the validated ANN model, a new empirical formula was derived for predicting the ACC of CCFT columns. Obviously, a higher accuracy of the proposed empirical formula was achieved compared to the existing formulae.


artificial neural network;axial compression capacity;circular concrete-filled tube;empirical formula


Supported by : National Research Foundation of Korea (NRF)


  1. Wu, X., Ghaboussi, J. and Garrett Jr, J. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659.
  2. Xue, J.-Q., Briseghella, B. and Chen, B.-C. (2012), "Effects of debonding on circular CFST stub columns", J. Constr. Steel Res., 69(1), 64-76.
  3. Yamamoto, T., Kawaguchi, J. and Morino, S. (2002), "Experimental study of the size effect on the behavior of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng., 561, 237-244.
  4. Yu, Z.-w., Ding, F.-x. and Cai, C. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174.
  5. Yu, Z., Ding, F. and Lin, S. (2002), "Researches on Behavior of High-performance Concrete Filied Tubular Steel Short Columns [J]", J. Build. Struct., 2.
  6. Zhang, S.-m. and Wang, Y.-y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civil Eng. J., 37(9), 1-10.
  7. Zhang, Y., Fu, G.-Y., Yu, C.-J., Chen, B., Zhao, S.-X. and Li, S.-P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel Compos. Struct., Int. J., 22(4), 821-835.
  8. Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829.
  9. Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M. (2017), "Compressive behaviour of circular steel tubeconfined concrete stub columns with active and passive confinement", Steel Compos. Struct., Int. J., 24(3), 323-337.
  10. Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482.
  11. O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes".
  12. O'Shea, M.D. and Bridge, R.Q. (1996), "Circular thin-walled tubes with high strength concrete infill", Composite construction in steel and concrete III, pp. 780-793.
  13. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303.
  14. Pendharkar, U., Chaudhary, S. and Nagpal, A. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., Int. J., 39(2), 267-285.
  15. Roeder, C.W., Lehman, D.E. and Bishop, E. (2010), "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553.
  16. Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., AIJ, 523(1), 133-140.
  17. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188.
  18. Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Univ. Sci. Technol., 21(2), 7-10.
  19. Tashakori, A. and Adeli, H. (2002), "Optimum design of coldformed steel space structures using neural dynamics model", J. Constr. Steel Res., 58(12), 1545-1566.
  20. Tran, V.-L., Thai, D.-K. and Kim, S.-E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 111332.
  21. Wang, Z.-B., Tao, Z., Han, L.-H., Uy, B., Lam, D. and Kang, W.-H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221.
  22. Karina, C.N., Chun, P.-j. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., Int. J., 24(5), 635-641.
  23. Kato, B. (1995), "Strength and Rotation Capacity of Concrete-Filled Tubular Columns, Part 1", J. Struct. Constr. Eng. (Transactions of AIJ), AJI, 468, 183-191.
  24. Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135.
  25. Khan, Q., Sheikh, M.N. and Hadi, M.N. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model".
  26. Leung, C.K., Ng, M.Y. and Luk, H.C. (2006), "Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams", J. Compos. Constr., 10(2), 125-138.
  27. Liao, F.-Y., Han, L.-H. and He, S.-H. (2011), "Behavior of CFST short column and beam with initial concrete imperfection: Experiments", J. Constr. Steel Res., 67(12), 1922-1935.
  28. Lin, C. (1988), "Axial capacity of concrete infilled cold-formed steel columns".
  29. Lin, S., Zhao, Y.-G. and He, L. (2018), "Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns", Eng. Struct., 173, 1019-1028.
  30. Luksha, L. and Nesterovich, A. (1991), "Strength testing of largediameter concrete filled steel tubular members", Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Wakabayashi, M.(ed.), Fukuoka, Japan, Association for International Cooperation and Research in Steel-Concrete Composite Structures.
  31. MacKay, D.J. (1992), "Bayesian interpolation", Neural Computat., 4(3), 415-447.
  32. Mandal, P. (2017), "Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression", Eng. Struct., 152, 843-855.
  33. Mikami, I., Tanaka, S. and Hiwatashi, T. (1998), "Neural Network System for Reasoning Residual Axial Forces of High-Strength Bolts in Steel Bridges", Comput.-Aided Civil Infra. Eng., 13(4), 237-246.
  34. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868.
  35. Mukherjee, A., Deshpande, J. and Anmala, J. (1996), "Prediction of buckling load of columns using artificial neural networks", J. Struct. Eng., 122(11), 1385-1387.
  36. Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aided Civil Infra. Eng., 16(2), 126-142.
  37. Adeli, H. and Karim, A. (1997), "Neural network model for optimization of cold-formed steel beams", J. Struct. Eng., 123(11), 1535-1543.
  38. AISC Committee (2010), Specification for structural steel buildings (ANSI/AISC 360-10), American Institute of Steel Construction, Chicago, IL, USA.
  39. AS 5100.6 (2004), Bridge design Part 6: Steel and composite construction, AS 5100.6.
  40. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993.
  41. Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B: Eng., 43(8), 3198-3207.
  42. Beale, M.H., Hagan, M.T. and Demuth, H.B. (1992), Neural Network $Toolbox^{TM}$ User's Guide, The Mathworks Inc.
  43. Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439.
  44. ACI 318-08 (2011), Building Code Requirements for Structural Concrete and Commentary (ACI 318-08).
  45. Bradford, M., Loh, H. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58(2), 243-252.
  46. Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208.
  47. Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Wall. Struct., 105, 220-230.
  48. Engin, S., Ozturk, O. and Okay, F. (2015), "Estimation of ultimate torque capacity of the SFRC Beams Using ANN", Struct. Eng. Mech., Int. J., 53(5), 939-956.
  49. Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete filled steel tubes", J. Proceedings, 64(7), 404-413.
  50. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068.
  51. Goode, C. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", ASCCS Seminar on Concrete Filled Steel Tubes-A Comparison of International Codes and Practice.
  52. Gu, W., Guan, C., Zhao, Y. and Cao, H. (2004), "Experimental study on concentrically-compressed circular concrete filled CFRP-steel composite tubular short columns", J. Shenyang Architect. Civil Eng. Univ. (Natural Science), 20(2), 118-120.
  53. Han, L.-H. and Yao, G.-H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59(12), 1455-1475.
  54. Han, L.-H. and Yao, G.-H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377.
  55. Han, L.-H., Yao, G.-H. and Zhao, X.-L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269.
  56. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366.
  57. Hu, Y., Yu, T. and Teng, J. (2011), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J.of Compos. Constr., 15(5), 850-860.
  58. Huang, C., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K., Weng, Y., Wang, S. and Wu, M.-H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230.
  59. Janss, J. (1974), Charges ultimes des profils creux remplis de beton charges axialement, Centre de Recherches Scientifiques et Techniques de l'Industrie des Fabrications Metalliques
  60. Jazayeri, K., Jazayeri, M. and Uysal, S. (2016), "Comparative analysis of Levenberg-Marquardt and Bayesian regularization backpropagation algorithms in photovoltaic power estimation using artificial neural network", Industrial Conference on Data Mining.
  61. Johansson, M. (2002), "The efficiency of passive confinement in CFT columns", Steel Compos. Struct., Int. J., 2(5), 379-396.
  62. Johnson, R.P. and Anderson, D. (2004), Designers' Guide to EN 1994-1-1: Eurocode 4: Design of Composite Steel and Concrete Structures. General Rules and Rules for Buildings, Thomas Telford.
  63. Kang, H., Lim, S. and Moon, T. (2002), "Behavior of CFT stub columns filled with PCC on concentrically compressive load", J. Architect. Inst. Korea, 18(9), 21-28.
  64. Kao, C.-S. and Yeh, I. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., Int. J., 52(4), 739-753.