DOI QR코드

DOI QR Code

Modal Analysis and Design of Silicon Nitride Rib Waveguides for Evanescent-wave Bimodal Biosensors

  • Jung, Hongsik (Department of Electronic and Electrical Fusion Engineering, Hongik University)
  • Received : 2019.06.28
  • Accepted : 2019.08.08
  • Published : 2019.10.25

Abstract

$Si_3N_4$ rib optical waveguides suitable for evanescent-wave photonic biosensors are analyzed to derive the conditions for single-mode propagation. A photonic biosensor structure at a wavelength of $0.63{\mu}m$ based on two-mode interference is proposed, and the rib width, rib thickness and rib-core thickness for single-mode and two-mode waveguides (corresponding to sensing region) are proposed to be $3{\mu}m$, 2 nm, and 150 nm, and $3{\mu}m$, 2 nm, and 340 nm, respectively. The optical characteristics and propagation of each guided-wave mode are investigated utilizing the film-mode-matching and eigenmode-expansion methods.

Keywords

Integrated-optic photonic biosensor;$Si_3N_4$ rib optical waveguide;Two-mode interference;Evanescent wave;Film mode-matching analysis

Acknowledgement

Supported by : National Research Foundation of Korea (KNRF)

References

  1. H. Takahashi, "Planar lightwave circuit devices for optical communications: present and future," Proc. SPIE 5246, 520-531 (2003).
  2. C. Ciminelli, F. Dell'Olio, C. E. Campanella, and M. N. Armenise, "Photonic technology for angular velocity sensing," Adv. Opt. Photonics 2, 370-404 (2010). https://doi.org/10.1364/AOP.2.000370
  3. E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Masanovic, B. Stamenic, D. J. Blumenthal, and J. E. Bowers, "Photonic integrated circuit optical buffer for packet-switched networks," Opt. Express 17, 6629-6635 (2009). https://doi.org/10.1364/OE.17.006629
  4. A. F. Gavelsa, D. G. Garcia, J. C. Ramirez, and L. M. Lechuga, "Last advances in silicon-based optical biosensors," Sensors 16, 285 (2016). https://doi.org/10.3390/s16030285
  5. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonator via atomic layer deposition," Opt. Express 20, 27661-27669 (2012). https://doi.org/10.1364/OE.20.027661
  6. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. D. Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. V. Dorpe, "Low-loss single mode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line," IEEE Photonics J. 5, 2202809 (2013). https://doi.org/10.1109/JPHOT.2013.2292698
  7. J. C. Tinguely, O. L. Helle, and B. S. Ahluwalia, "Silicon nitride waveguide platform for fluorescence microscopy of living cells," Opt. Express 25, 27678-27690 (2017). https://doi.org/10.1364/OE.25.027678
  8. A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, "Silicon-nitride waveguides for on-chip Raman spectroscopy," Proc. SPIE 9141, 91411C (2014).
  9. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, "CMOS compatible $Si_3N_4$ waveguides for optical biosensing," Procedia Eng. 120, 578-581 (2015). https://doi.org/10.1016/j.proeng.2015.08.728
  10. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and Roel Baets, "Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip," Photonics Res. 3, B47-B59 (2015). https://doi.org/10.1364/PRJ.3.000B47
  11. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, "Silicon nitride in silicon photonics," Proc. IEEE 106, 2209-2231 (2018). https://doi.org/10.1109/JPROC.2018.2861576
  12. D. H. Geuzebroek, G. A. J. Besselink, F. Schreuder, F. Falke, A. Leinse, and R. G. Heideman, "Silicon-nitride biophotonics sensing platform," Proc. SPIE 10921, 1092117 (2019).
  13. K. S. Chiang, "Performance of the effective-index method for the analysis of dielectric waveguides," Opt. Lett. 16, 714-716 (1991). https://doi.org/10.1364/OL.16.000714
  14. J. Jose, F. B. Segerink, J. P. Korterik, and H. L. Offerhaus, "Near-field observation of spatial phase shifts associated with Goos-Hänschen and surface plasmon resonance effects," Opt. Lett. 16, 1958-1964 (2008).
  15. K. E. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated bimodal waveguide interferometric biosensor for label-free analysis," J. Lightwave Technol. 29, 1926-1930 (2011). https://doi.org/10.1109/JLT.2011.2150734
  16. D. Duval, "Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers," Lab. Chip 12, 1987-1994 (2012). https://doi.org/10.1039/c2lc40054e
  17. Y. Qi, D. J. Rowe, V. Mittal, M. Banakar, Y. Wu, M. Nedeljkovic, J. S. Wilkinson, and G. Z. Mashanovich, "Integration of mid-infrared SOI photonics with microfluidics," Proc. SPIE 10923, 1092301 (2019).
  18. R. A. Soref, J. J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$," IEEE J. Quantum Electron. 27, 1971-1974 (1991). https://doi.org/10.1109/3.83406
  19. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The singlemode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol. 16, 1851-1853 (1998). https://doi.org/10.1109/50.721072
  20. J. Schmidtchen, A. Splett, B. Schuppert, K. Pertermann, and G. Burbach, "Low loss single mode optical waveguides with large cross-selection in silicon-on-insulator," Electron. Lett. 27, 1486-1487 (1991). https://doi.org/10.1049/el:19910930
  21. FIMMWAVE. v6.6.0 (2018). Photon Design Ltd.
  22. F. T. Dullo, S. Lindecrantz, J, Jagerska, H. Hansen, M. Engqvist, S. A. Solbo, and O. G. Helleso, "Sensitive on-chip methane detection with a cryptophane-A cladded Mach- Zehnder interferometer," Opt. Express 23, 31564-31573 (2015). https://doi.org/10.1364/OE.23.031564