DOI QR코드

DOI QR Code

INVESTIGATING THE PULSAR WIND NEBULA 3C 58 USING EMISSION MODELS

  • Kim, Seungjong (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Park, Jaegeun (Department of Astronomy and Space Science, Chungbuk National University) ;
  • An, Hongjun (Department of Astronomy and Space Science, Chungbuk National University)
  • Received : 2019.04.10
  • Accepted : 2019.07.25
  • Published : 2019.10.31

Abstract

We present IR flux density measurements, models of the broadband SED, and results of SED modeling for the Pulsar Wind Nebula (PWN) 3C 58. We find that the Herschel flux density seems to be slightly lower than suggested by interpolation of previous measurements in nearby wavebands, implying that there may be multiple electron populations in 3C 58. We model the SED using a simple stationary one-zone and a more realistic time-evolving multi-zone scenario. The latter includes variations of flow properties in the PWN (injected energy, magnetic field, and bulk speed), radiative energy losses, adiabatic expansion, and diffusion, similar to previous PWN models. From the modeling, we find that a PWN age of 2900-5400 yrs is preferred and that there may be excess emission at ${\sim}10^{11}Hz$. The latter may imply multiple populations of electrons in the PWN.

Keywords

pulsars: general;ISM: individual objects: 3C 58;radiation mechanisms: non-thermal

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Discovery of Pulsations from the Pulsar J0205+6449 in SNR 3C 58 with the Fermi Gamma-ray Space Telescope, ApJ, 699, L102 https://doi.org/10.1088/0004-637X/699/2/L102
  2. Aharonian, F. A., Bogovalov, S. V., and Khangulyan, D. 2012, Abrupt Acceleration of a 'Cold' Ultrarelativistic Wind from the Crab Pulsar, Nature, 482, 507 https://doi.org/10.1038/nature10793
  3. Aleksic, J., Ansoldi, S., Antonelli, L. A., et al. 2014, Discovery of TeV ${\gamma}$-ray Emission from the Pulsar Wind Nebula 3C 58 by MAGIC, A&A, 567, L8 https://doi.org/10.1051/0004-6361/201424261
  4. An, H. 2019, NuSTAR Hard X-ray Studies of the Pulsar Wind Nebula 3C 58, ApJ, 876, 150 https://doi.org/10.3847/1538-4357/ab18a6
  5. An, H., & Romani, R. W. 2017, Light Curve and SED Modeling of the Gamma-ray Binary 1FGL J1018.6-5856:Constraints on the Orbital Geometry and Relativistic Flow, Apj, 838, 145 https://doi.org/10.3847/1538-4357/aa6623
  6. An, H., Madsen, K. K., Reynolds, S. P., et al. 2014, Highenergy X-ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport, ApJ, 793, 90 https://doi.org/10.1088/0004-637X/793/2/90
  7. Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. 2016, Planck Intermediate R esults - XXXI. Microwave Survey of Galactic Supernova Remnants, A&A, 586, A134 https://doi.org/10.1051/0004-6361/201425022
  8. Bietenholz, M. F. 2006, Radio Images of 3C 58: Expansion and Motion of Its Wisp, ApJ, 645, 1180 https://doi.org/10.1086/504584
  9. Ciesla, L., Boselli, A., Smith, M. W. L., et al. 2012, Submillimetre Photometry of 323 Nearby Galaxies from the Herschel Reference Survey, A&A, 543, A161 https://doi.org/10.1051/0004-6361/201219216
  10. De Looze, I., Barlow, M. J., Bandiera, R. et al. 2019, The Dust Content of the Crab Nebula, MNRAS, 488, 164 https://doi.org/10.1093/mnras/stz1533
  11. Drury, L. O. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  12. Dubus, G., Lamberts, A., & Fromang, S. 2015, Modelling the High-energy Emission from Gamma-ray Binaries Using Numerical Relativistic Hydrodynamics, A&A, 581, A27 https://doi.org/10.1051/0004-6361/201425394
  13. Finke, J. D., Dermer, C. D., & Bottcher, M. 2008, Synchrotron Self-Compton Analysis of TeV X-ray-selected BL Lacertae Objects, ApJ, 686, 181 https://doi.org/10.1086/590900
  14. Green, D. A., & Scheuer, P. A. G. 1992, Upper Limits on the Infrared Flux Density of the Filled-centre Supernova Remnant 3C 58, MNRAS, 258, 833 https://doi.org/10.1093/mnras/258.4.833
  15. Kang, H., 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
  16. Kargaltsev, O., Klingler, N., Chastain, S., & Pavlov, G. G. 2017, Toward Understanding the Physical Underpinnings of Spatial and Spectral Morphologies of Pulsar Wind Nebulae, J. Phys. Conf. Ser., 012050
  17. Kennel, C. F., & Coroniti, F. V. 1984, Confinement of the Crab Pulsar's Wind by Its Supernova Remnant, ApJ, 283, 694 https://doi.org/10.1086/162356
  18. Kim, M., & An, H., 2019, Measuring Timing Properties of PSR B0540-69, JKAS, 52, 41
  19. Lemoine, M., Kotera, K. & Petri, J. 2015, On Ultra-high Energy Cosmic Ray Acceleration at the Termination Shock of Young Pulsar Winds, JCAP, 7, 16
  20. Li, J., Torres, D. F., Lin, T. T., et al. 2018, Observing and Modeling the Gamma-ray Emission from Pulsar/Pulsar Wind Nebula Complex PSR J0205+ 6449/3C 58, ApJ, 858, 84 https://doi.org/10.3847/1538-4357/aabac9
  21. Longair, M. S. 2011, High Energy Astrophysics (Cambridge: Cambridge University Press)
  22. Lyutikov, M., Temim, T., Komissarov, S., et al. 2018, Interpreting Crab Nebula's Synchrotron Spectrum: Two Acceleration Mechanisms, MNRAS, 489, 2
  23. Madsen, K. K., Reynolds, S., Harrison, F., et al. 2015, Broadband X-ray Imaging and Spectroscopy of the Crab Nebula and Pulsar with NuSTAR, ApJ, 801, 66 https://doi.org/10.1088/0004-637X/801/1/66
  24. Nguyen, H. T., Schulz, B., Levenson, L., et al. 2010, HerMES: The SPIRE Confusion Limit, A&A, 518, L5 https://doi.org/10.1051/0004-6361/201014680
  25. Nynka, M., Hailey, C. J., Reynolds, S. P., et al. 2014, NuSTAR Study of Hard X-ray Morphology and Spectroscopy of PWN G21.5-0.9, ApJ, 789, 72 https://doi.org/10.1088/0004-637X/789/1/72
  26. Pacini, F., & Salvati, M. 1973, On the Evolution of Supernova Remnants. Evolution of the Magnetic Field, Particles, Content, and Luminosity, ApJ, 186, 249 https://doi.org/10.1086/152495
  27. Porth, O., Vorster M. J., Lyutikov, M. and Engelbrecht N. E. 2016, Diffusion in Pulsar Wind Nebulae: An Investigation Using Magnetohydrodynamic and Particle Transport Models, MNRAS, 460, 4135 https://doi.org/10.1093/mnras/stw1152
  28. Reynolds, S. P. 2009, Synchrotron-loss Spectral Breaks in Pulsar-wind Nebulae and Extragalactic Jets, ApJ, 703, 662 https://doi.org/10.1088/0004-637X/703/1/662
  29. Roberts, D. A., Goss, W. M., Kalberla, P. M. W., et al. 1993, High Resolution Hi Observations of 3C 58, A&A, 274, 427
  30. Sironi, L., Keshet, U. & Lemoine, M. 2015, Relativistic Shocks: Particle Acceleration and Magnetization, SSRv, 191, 519
  31. Slane, P. O., Helfand, D. J., & Murray, S. S. 2002, New Constraints on Neutron Star Cooling from Chandra Observations of 3C 58, ApJ, 571, L45 https://doi.org/10.1086/341179
  32. Slane, P. O., Helfand, D. J., van der Swaluw, E. & Murray, S. S. 2002, New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58, ApJ, 616, 403
  33. Slane, P. O., Helfand, D. J., Reynolds, S. P., et al. 2008, The Infrared Detection of the Pulsar Wind Nebula in the Galactic Supernova Remnant 3C 58, ApJ, 676, L33 https://doi.org/10.1086/587031
  34. Stephenson, F. R. 1971, A Suspected Supernova in AD 1181. IAU Colloq., 8, 10 (Cambridge: Cambridge University Press)
  35. Tanaka, S. J., & Takahara, F. 2013, Properties of Young Pulsar Wind Nebulae: TeV Detectability and Pulsar Properties, MNRAS, 429, 2945 https://doi.org/10.1093/mnras/sts528
  36. Tang, X., & Chevalier, R. A. 2012, Particle Transport in Young Pulsar Wind Nebulae, ApJ, 752, 83 https://doi.org/10.1088/0004-637X/752/2/83
  37. Torres, D. F., Cillis, A. N. & Martin Rodriguez, J. 2013, An Energy-conserving, Particle-dominated, Time-dependent Model of 3C 58 and Its Observability at High Energies, ApJ, 763, L4 https://doi.org/10.1088/2041-8205/763/1/L4
  38. Valtchanov, I. 2017, The Spectral and Photometric Imaging Receiver (SPIRE) Handbook, Herschel Explanatory Supplement, https://www.cosmos.esa.int/web/herschel/legacy-documentation-spire
  39. Yuksel, H., Kistler, M. D. & Stanev, T. 2009, TeV Gammarays from Geminga and the Origin of the GeV Positron Excess, Phys. Rev. Lett., 103, 051101 https://doi.org/10.1103/PhysRevLett.103.051101