DOI QR코드

DOI QR Code

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehrabi, Mojtaba (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2019.02.07
  • Accepted : 2019.08.18
  • Published : 2019.06.25

Abstract

The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Keywords

V94.2 gas turbine combustor;combustion chamber;temperature distribution;realistic operation conditions;3D-FDM

Acknowledgement

Supported by : University of Kashan

References

  1. Aditya, K., Gruber, A., Xu, Ch., Lu, T., Krisman, A., Bothien, M.R. and Chen, J.H. (2019), "Direct numerical simulation of flame stabilization assisted by autoignition in a reheat gas turbine combust", Proceed. Combus. Inst., 37(2), 2635-2642. https://doi.org/10.1016/j.proci.2018.06.084 https://doi.org/10.1016/j.proci.2018.06.084
  2. Andreini, A., Becchi, R., Facchini, B., Picchi, A. and Peschiulli, A. (2017), "The effect of effusion holes inclination angle on the adiabatic film cooling effectiveness in a three-sector gas turbine combustor rig with a realistic swirling flow", Int. J. Therm. Sci., 121, 75-88. https://doi.org/10.1016/j.ijthermalsci.2017.07.003 https://doi.org/10.1016/j.ijthermalsci.2017.07.003
  3. Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Technical Physi., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178 https://doi.org/10.1134/S0021894411050178
  4. Arani, A.G., Amir, S., Mozdianfard, M.R., Khoddami Maraghi, Z. and Mohammadimehr, M. (2012a), "Electro-thermal non-local vibration analysis of embedded DWBNNTs", IMechE, Part C: J. Mech. Eng. Sci., 226(5), 1410-1422. https://doi.org/10.1177/0954406211422619 https://doi.org/10.1177/0954406211422619
  5. Arani, A.G., Mobarakeh, M.R., Shams, Sh. and Mohammadimehr, M. (2012b), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5 https://doi.org/10.1007/s12206-012-0639-5
  6. Bejan, A. and Kraus, A.D. (2003), Heat Transfer Handbook, John Wiley & Sons, Inc., New Jersey, USA.
  7. Boyce, M.P. (2012), Gas Turbine Engineering Handbook, (4th edition), Butterworth-Heinemann, Elsevier Inc., NY, USA.
  8. Bradshaw, S. and Waitz, L. (2006), "Impact of manufacturing variability on combustor liner durability", J. Eng. Gas Turbines Power, 131(3), 032503. https://doi.org/10.1115/1.2980016
  9. Chau, J.L.H., Pan, A. and Yang, Ch. (2017), "Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings", Adv. Mater. Res., Int. J., 6(4), 343-348. https://doi.org/10.12989/amr.2017.6.4.343
  10. Goodger, E.M. (2007), Aerospace Fuels, Landfall Press, Norwich, UK.
  11. Gustafsson, K.M.B. and Johansson, T. (2001), "An experimental study of surface temperature distribution on effusion-cooled plates", J. Eng. Gas. Turb. Power., 123, 308-316. https://doi.org/10.1115/1.1364496 https://doi.org/10.1115/1.1364496
  12. Hill, P.G. and Peterson, C.R. (1992), Mechanics and Thermodynamics of Propulsion, (2nd edition), Addison- Wesley Inc., Boston, MA, USA.
  13. Kim, K.M., Yun, N., Jeon, Y.H., Lee, D.H., Cho, H.H. and Kang, S. (2010a), "Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation", J. Mech. Sci. Technol, 24(9), 1939-1946. https://doi.org/10.1007/s12206-010-0625-8 https://doi.org/10.1007/s12206-010-0625-8
  14. Kim, K.M., Yun, N., Jeon, Y.H., Lee, D.H. and Cho, H.H. (2010b), "Failure analysis in after shell section of gas turbine combustion liner under base-load operation", Eng. Fail. Anal., 17(4), 848-856. https://doi.org/10.1016/j.engfailanal.2009.10.018 https://doi.org/10.1016/j.engfailanal.2009.10.018
  15. Koc, I. (2015), "The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines", Adv. Energy Res., Int. J., 3(1), 31-43. https://doi.org/10.12989/eri.2015.3.1.031 https://doi.org/10.12989/eri.2015.3.1.031
  16. Lefebvre, A.H. (2010), Gas Turbine Combustion, (3rd edition), Taylor and Francis Group, NY, USA.
  17. Lienhard, J.H. and Lenhard, V.J.H. (2003), A Heat Transfer Text Book, (3rd edition), Phlogiston Press Cambridge, MA, USA.
  18. Martiny M., Schulz, A. and Witting, S. (1995), "Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperatures and Flow Visualization", ASME Conference Proceedings, Houston, TX, USA.
  19. Matarazzo, S. and Laget, H. (2011), "Modeling of heat transfer in a gas turbine liner combustor", Chia Laguna, Cagliari, Sardinia, Italy, 11-15.
  20. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054 https://doi.org/10.1016/j.apm.2017.03.054
  21. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B, 94(1), 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030 https://doi.org/10.1016/j.compositesb.2016.03.030
  22. Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37, 1-15.
  23. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055 https://doi.org/10.1016/j.compstruct.2015.11.055
  24. Mohammadimehr, M., BabaAkbar Zarei, A., Parakandeh, A. and Arani, A.G. (2017), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and unsymmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., Int. J., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361
  25. Mohammadimehr, M., Atifeh, S.J. and Rousta Navi, B. (2018a), "Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings", J. Vib. Control, 24(15), 3471-3486. https://doi.org/10.1177/1077546317706887 https://doi.org/10.1177/1077546317706887
  26. Mohammadimehr, M., Emdadi, M., Afshari, H. and Rousta Navi, B. (2018b), "Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermomagneto-mechanical loadings using DQM", Int. J. Smart Nano Mater., 9(4), 233-260. https://doi.org/10.1080/19475411.2017.1377312 https://doi.org/10.1080/19475411.2017.1377312
  27. Mukherji, D., Rosler, J. and Wehrs, J. (2012), "Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures", Adv. Mater. Res., Int. J., 1(3), 205-219. https://doi.org/10.12989/amr.2013.1.3.205
  28. Najjar, Y.S.H. (2000), "Gas turbine cogeneration systems: a review of some novel cycles", Appl. Therm. Eng., 20, 179-197. https://doi.org/10.1016/S1359-4311(99)00019-8 https://doi.org/10.1016/S1359-4311(99)00019-8
  29. Perpignan, A.A.V., Rao, A.G. and Roekaerts, D.J.E.M. (2018), "Flameless combustion and its potential towards gas turbines", Prog. Energy. Combus. Sci., 69, 28-62. https://doi.org/10.1016/j.pecs.2018.06.002 https://doi.org/10.1016/j.pecs.2018.06.002
  30. Poullikkas, A. (2005), "An overview of current and future sustainable gas turbine technologies", Renew. Sustain. Energy. Rev., 9(5), 409-443. https://doi.org/10.1016/j.rser.2004.05.009 https://doi.org/10.1016/j.rser.2004.05.009
  31. Rajaei, Gh., Aftabi, F. and Ehyaei, M.A. (2017), "Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building", Adv. Energy Res., Int. J., 5(2), 129-145. https://doi.org/10.12989/eri.2017.5.2.129
  32. Sanaye, S., Amani, M. and Amani, P. (2018), "4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection", Sustain. Energy Technol. Assess., 29, 70-81. https://doi.org/10.1016/j.seta.2018.06.003
  33. Sousa, J., Paniagua, G. and Morata, E.C. (2017), "Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor", Appl. Energy, 195, 247-256. https://doi.org/10.1016/j.apenergy.2017.03.045 https://doi.org/10.1016/j.apenergy.2017.03.045
  34. Rahmati, A.H. and Mohammadimehr, M. (2014), "Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM", Physica B: Condensed Matter, 440, 88-98. https://doi.org/10.1016/j.physb.2014.01.036 https://doi.org/10.1016/j.physb.2014.01.036
  35. Reeves, D. (1956), "Flame radiation in an industrial gas turbine combustion chamber", National Gas Turbine Establishment, NGTE Memo M285, UK.
  36. Rist, J.F., Dias, M.F., Palman, M., Zalazo, D. and Cukurel, B. (2017), "Economic dispatch of a single microgas turbine under CHP operation", Appl. Energy, 200, 1-18. https://doi.org/10.1016/j.apenergy.2017.05.064 https://doi.org/10.1016/j.apenergy.2017.05.064
  37. Rostami, R., Mohammadimehr, M., Ghannad, M. and Jalali, A. (2018), "Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties", Theor. Appl. Mech. Lett., 8, 97-108. https://doi.org/10.1016/j.taml.2018.02.005 https://doi.org/10.1016/j.taml.2018.02.005
  38. TerMaath, C.Y., Skolnik, E.G., Schefer, R.W. and Keller, J.O. (2006), "Emissions reduction benefits from hydrogen addition to midsize gas turbine feedstocks", Int. J. Hyd. Energy., 31(9), 1147-1158. https://doi.org/10.1016/j.ijhydene.2005.10.002 https://doi.org/10.1016/j.ijhydene.2005.10.002
  39. TUGA (2012), V94.2 Gas Turbine Maintenance and Training.
  40. Wan, H., Gao, Z., Ji, J., Fang, J. and Zhang, Y. (2019), "Experimental study on horizontal gas temperature distribution of two propane diffusion flames impinging on an unconfined ceiling", Int. J. Therm. Sci., 136, 1-8. https://doi.org/10.1016/j.ijthermalsci.2018.10.010 https://doi.org/10.1016/j.ijthermalsci.2018.10.010
  41. Wang, X., Wei, K., Tao, Y., Yang, X., Zhou, H., He, R. and Fang, D. (2019), "Thermal protection system integrating insulation materials and multi-layer ceramic matrix composite cellular sandwich panels", Compos. Struct., 209, 523-534. https://doi.org/10.1016/j.compstruct.2018.11.004 https://doi.org/10.1016/j.compstruct.2018.11.004
  42. Yang, Z., Adeosun, A., Kumfer, B.B. and Axelbaum, R.L. (2017), "An approach to estimating flame radiation in combustion chambers containing suspended-particles", Fuel, 199, 420-429. https://doi.org/10.1016/j.fuel.2017.02.083 https://doi.org/10.1016/j.fuel.2017.02.083
  43. Yazdani, R., Mohammadimehr, M. and Rousta Navi, B. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., Int. J., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351
  44. Bergman, T.L., Lavine, A.S., Incropera, F.P. and Dewitt, D.P. (2011), Fundamentals of Heat and Mass Transfer, (7th edition), John Wiley & Sons, Inc., NJ, USA.