DOI QR코드

DOI QR Code

Size-dependent vibration analysis of laminated composite plates

  • Shahsavari, Davood (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2019.03.25
  • Accepted : 2019.08.10
  • Published : 2019.09.25

Abstract

The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.

Keywords

free vibration;Laminated composite plates;Pasternak foundation;Eringen nonlocal theory

References

  1. Aghababaei, R. and Reddy, J. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044 https://doi.org/10.1016/j.jsv.2009.04.044
  2. Akavci, S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plastics Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766 https://doi.org/10.1177/0731684407081766
  3. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257
  4. Barretta, R., Luciano, R., de Sciarra, F.M. and Ruta, G. (2018), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Eur. J. Mech.-A/Solids, 72, 275-286. https://doi.org/10.1016/j.euromechsol.2018.04.012 https://doi.org/10.1016/j.euromechsol.2018.04.012
  5. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032 https://doi.org/10.1016/j.compositesb.2011.05.032
  6. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115 https://doi.org/10.12989/sss.2017.19.2.115
  7. Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386 https://doi.org/10.1177/1099636211426386
  8. Chen, J., Guo, J. and Pan, E. (2017), "Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect", J. Sound Vib., 400, 550-563. https://doi.org/10.1016/j.jsv.2017.04.001 https://doi.org/10.1016/j.jsv.2017.04.001
  9. Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201 https://doi.org/10.21474/IJAR01/7662
  10. Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. https://doi.org/10.1080/15376494.2017.1285458 https://doi.org/10.1080/15376494.2017.1285458
  11. Eltaher, M., Khater, M., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  12. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J.Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803 https://doi.org/10.1063/1.332803
  13. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  14. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0 https://doi.org/10.1016/0020-7225(72)90039-0
  15. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263.https://doi.org/10.1016/j.ijengsci.2018.09.006 https://doi.org/10.1016/j.ijengsci.2018.09.006
  16. Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002 https://doi.org/10.1016/j.ijmecsci.2014.11.002
  17. Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017 https://doi.org/10.1016/j.ijengsci.2017.08.017
  18. Farokhi, H. and Ghayesh, M.H. (2018b), "On the dynamics of imperfect shear deformable microplates", Int. J. Eng. Sci., 133, 264-283. https://doi.org/10.1016/j.ijengsci.2018.04.011 https://doi.org/10.1016/j.ijengsci.2018.04.011
  19. Farokhi, H. and Ghayesh, M.H. (2018c), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033 https://doi.org/10.1016/j.cnsns.2017.11.033
  20. Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", Int. J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007 https://doi.org/10.1016/j.ijengsci.2016.09.007
  21. Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Eur. J. Mech.-A/Solids, 41, 37-42. https://doi.org/10.1016/j.euromechsol.2013.02.003 https://doi.org/10.1016/j.euromechsol.2013.02.003
  22. Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004 https://doi.org/10.1016/j.ijengsci.2017.11.004
  23. Ghayesh, M.H. (2018b), "Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037 https://doi.org/10.1016/j.ijmecsci.2018.02.037
  24. Ghayesh, M.H. (2018c), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017 https://doi.org/10.1016/j.apm.2018.02.017
  25. Ghayesh, M.H. and Farokhi, H. (2015), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004 https://doi.org/10.1016/j.ijengsci.2015.07.004
  26. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001 https://doi.org/10.1016/j.ijengsci.2012.12.001
  27. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003 https://doi.org/10.1016/j.ijengsci.2013.04.003
  28. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006 https://doi.org/10.1016/j.ijengsci.2013.05.006
  29. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021 https://doi.org/10.1016/j.compositesb.2013.02.021
  30. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074 https://doi.org/10.1016/j.compositesb.2013.12.074
  31. Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003 https://doi.org/10.1016/j.ijengsci.2015.11.003
  32. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017a), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011 https://doi.org/10.1016/j.ijengsci.2016.09.011
  33. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017b), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001 https://doi.org/10.1016/j.ijmecsci.2017.01.001
  34. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014 https://doi.org/10.1016/j.ijengsci.2017.03.014
  35. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7 https://doi.org/10.1007/s11071-014-1773-7
  36. Gibson, R.F. (2016), Principles of Composite Material Mechanics, CRC press.
  37. Guo, J., Chen, J. and Pan, E. (2016), "Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect", Compos. Struct., 153, 321-331. https://doi.org/10.1016/j.compstruct.2016.05.089 https://doi.org/10.1016/j.compstruct.2016.05.089
  38. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., Int. J., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013
  39. Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Physica B: Condensed Matter, 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049 https://doi.org/10.1016/j.physb.2017.11.049
  40. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212 https://doi.org/10.1142/S0217984916504212
  41. Karami, B. and Janghorban, M. (2019a), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Eur. J. Mech.-A/Solids, 76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008 https://doi.org/10.1016/j.euromechsol.2019.03.008
  42. Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227 https://doi.org/10.1016/j.tws.2019.106227
  43. Karami, B. and Janghorban, M. (2019c), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel Compos. Struct., Int. J., 32(2), 213-223.https://doi.org/10.12989/scs.2019.32.2.213
  44. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051 https://doi.org/10.21474/IJAR01/9193
  45. Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J.,23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215
  46. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  47. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  48. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025 https://doi.org/10.1016/j.tws.2018.02.025
  49. Karami, B., Janghorban, M. and Li, L. (2018c), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011 https://doi.org/10.1016/j.actaastro.2017.12.011
  50. Karami, B., Shahsavari, D. and Janghorban, M. (2018d), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
  51. Karami, B., Shahsavari, D. and Janghorban, M. (2018e), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143 https://doi.org/10.1080/15376494.2017.1323143
  52. Karami, B., Shahsavari, D. and Li, L. (2018f), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-Dimens. Syst.Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020 https://doi.org/10.1016/j.physe.2017.11.020
  53. Karami, B., Shahsavari, D. and Li, L. (2018g), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stress., 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781 https://doi.org/10.1080/01495739.2017.1393781
  54. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018h), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
  55. Karami, B., Janghorban, M. and Rabczuk, T. (2019a), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", Eur. J. Mech.-A/Solids, 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822 https://doi.org/10.1016/j.euromechsol.2019.103822
  56. Karami, B., Janghorban, M. and Rabczuk, T. (2019b), "Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory", Compos. Struct., 227, 111249. https://doi.org/10.1016/j.compstruct.2019.111249 https://doi.org/10.1016/j.compstruct.2019.111249
  57. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R. and Tornabene, F. (2019c), "Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750 https://doi.org/10.3390/molecules24152750
  58. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  59. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
  60. Karami, B., Shahsavari, D. and Janghorban, M. (2019f), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014 https://doi.org/10.1016/j.ijengsci.2019.06.014
  61. Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019g), "Wave Propagation of Porous Nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022
  62. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019h), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a0959. https://doi.org/10.1088/2053-1591/ab3474
  63. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019i), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089 https://doi.org/10.1016/j.compstruct.2019.02.089
  64. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019j), "Wave dispersion of nanobeams incorporating stretching effect", Waves Random Complex Media. https://doi.org/10.1080/17455030.17452019.11607623
  65. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019k), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036 https://doi.org/10.1016/j.ijmecsci.2019.03.036
  66. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019l), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 287-301. https://doi.org/10.1177/0954406218756451 https://doi.org/10.1177/0954406218756451
  67. Karlicic, D., Cajic, M., Adhikari, S., Kozic, P. and Murmu, T. (2017), "Vibrating nonlocal multi-nanoplate system under inplane magnetic field", Eur. J. Mech.-A/Solids, 64, 29-45. https://doi.org/10.1016/j.euromechsol.2017.01.013 https://doi.org/10.1016/j.euromechsol.2017.01.013
  68. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021 https://doi.org/10.1016/j.ijengsci.2017.11.021
  69. Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7 https://doi.org/10.1007/s10483-010-0105-7
  70. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006 https://doi.org/10.1016/j.compstruct.2012.07.006
  71. Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2017), "Wave propagation in a multilayered magneto-electro-elastic half-space induced by external/internal circular time-harmonic mechanical loading", Int. J. Solids Struct., 128, 243-261. https://doi.org/10.1016/j.ijsolstr.2017.08.032 https://doi.org/10.1016/j.ijsolstr.2017.08.032
  72. Murmu, T., McCarthy, M. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005 https://doi.org/10.1016/j.compstruct.2012.09.005
  73. Narendar, S., Gupta, S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 36(9), 4529-4538. https://doi.org/10.1016/j.apm.2011.11.073 https://doi.org/10.1016/j.apm.2011.11.073
  74. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  75. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6 https://doi.org/10.1016/0015-0568(75)90005-6
  76. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385 https://doi.org/10.1115/1.1380385
  77. Pan, E. and Heyliger, P. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693 https://doi.org/10.1006/jsvi.2001.3693
  78. Phan, N. and Reddy, J. (1985), "Analysis of laminated composite plates using a higher-order shear deformation theory", Int. J.Numer. Methods Eng., 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207 https://doi.org/10.1002/nme.1620211207
  79. Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007 https://doi.org/10.1016/j.jsv.2009.03.007
  80. Raghu, P., Preethi, K., Rajagopal, A. and Reddy, J.N. (2016), "Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects", Compos. Struct., 139, 13-29. https://doi.org/10.1016/j.compstruct.2015.11.068 https://doi.org/10.1016/j.compstruct.2015.11.068
  81. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719 https://doi.org/10.1115/1.3167719
  82. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  83. Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B, 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008 https://doi.org/10.1016/j.compositesb.2017.01.008
  84. Salari, E., Ashoori, A. and Vanini, S.A.S. (2019), "Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate", Adv. Nano Res., Int. J., 7(1), 25-38. https://doi.org/10.12989/anr.2019.7.1.025
  85. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007 https://doi.org/10.1016/j.compstruct.2015.04.007
  86. Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89 https://doi.org/10.1088/2053-1591/aa7d89
  87. Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7 https://doi.org/10.1007/s00707-018-2247-7
  88. Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
  89. Shahsavari, D., Karami, B. and Mansouri, S. (2018c), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech-A/Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004 https://doi.org/10.1016/j.euromechsol.2017.09.004
  90. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018d), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004 https://doi.org/10.1016/j.ast.2017.11.004
  91. Shahsavari, D., Karami, B. and janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., Int. J., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173
  92. She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005 https://doi.org/10.1016/j.ijengsci.2018.11.005
  93. Shen, H.-S., Zheng, J.-J. and Huang, X.-L. (2003), "Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundations", Compos. Struct., 60(1), 57-66. https://doi.org/10.1016/S0263-8223(02)00295-7 https://doi.org/10.1016/S0263-8223(02)00295-7
  94. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146.https://doi.org/10.2514/2.1622 https://doi.org/10.2514/2.1622
  95. Tang, H., Li, L. and Hu, Y. (2019a), "Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams", Appl. Math. Model., 66, 527-547. https://doi.org/10.1016/j.apm.2018.09.027 https://doi.org/10.1016/j.apm.2018.09.027
  96. Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019b), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin-Wall. Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027 https://doi.org/10.1016/j.tws.2019.01.027
  97. Thai, H.-T. and Kim, S.-E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010 https://doi.org/10.1016/j.compstruct.2015.03.010
  98. Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
  99. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
  100. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., Int. J., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309 https://doi.org/10.12989/anr.2016.4.4.309
  101. Zhang, Y., Liu, G. and Xie, X. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Physical Review B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404 https://doi.org/10.1103/PhysRevB.71.195404