DOI QR코드

DOI QR Code

Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Seyfi, Ali (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Dabbagh, Ali (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2019.03.21
  • Accepted : 2019.08.10
  • Published : 2019.09.25

Abstract

In the present study, nonlocal strain gradient theory (NSGT) is developed for wave propagation of functionally graded (FG) nanoscale plate in the thermal environment by considering the porosity effect. $Si_3N_4$ as ceramic phase and SUS304 as metal phase are regarded to be constitutive material of FG nanoplate. The porosity effect is taken into account on the basis of the newly extended method which considers coupling influence between Young's modulus and mass density. The motion relation is derived by applying Hamilton's principle. NSGT is implemented in order to account for small size effect. Wave frequency and phase velocity are obtained by solving the problem via an analytical method. The effects of different parameters such as porosity coefficient, gradient index, wave number, scale factor and temperature change on phase velocity and wave frequency of FG porous nanoplate have been examined and been presented in a group of illustrations.

Keywords

wave propagation;nonlocal strain gradient theory;thermal environment;porosity-dependent homogenization

References

  1. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007 https://doi.org/10.1016/j.matdes.2006.02.007
  2. Azadi, M. (2011), "Free and forced vibration analysis of fg beam considering temperature dependency of material properties", J. Mech. Sci. Technol., 25(1), 69-80. https://doi.org/10.1007/s12206-010-1015-y https://doi.org/10.1007/s12206-010-1015-y
  3. Barati, M.R. (2017), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007 https://doi.org/10.1016/j.ijengsci.2017.03.007
  4. Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Eur. J. Mech. - A/Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001 https://doi.org/10.1016/j.euromechsol.2017.09.001
  5. Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004 https://doi.org/10.1016/j.compstruct.2017.06.004
  6. Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), "Free vibration of fgm sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects", Compos. Struct., 179, 50-60. https://doi.org/10.1016/j.compstruct.2017.07.032 https://doi.org/10.1016/j.compstruct.2017.07.032
  7. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011 https://doi.org/10.1016/j.ijengsci.2015.05.011
  8. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved fg nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058 https://doi.org/10.1016/j.compstruct.2016.09.058
  9. Ebrahimi, F. and Dabbagh, A. (2017), "On flexural wave propagation responses of smart fg magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058 https://doi.org/10.1016/j.compstruct.2016.11.058
  10. Ebrahimi, F. and Haghi, P. (2017), "Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory", Acta Mechanica Solida Sinica, 30(6), 647-657. https://doi.org/10.1016/j.camss.2017.09.007 https://doi.org/10.1016/j.camss.2017.09.007
  11. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008 https://doi.org/10.1016/j.ijengsci.2016.07.008
  12. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016b), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y https://doi.org/10.1007/s11012-015-0208-y
  13. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017a), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Thermal Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483 https://doi.org/10.1080/01495739.2016.1230483
  14. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017b), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002 https://doi.org/10.1016/j.tws.2017.04.002
  15. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2018a), "Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects", Waves Random Complex Media, 28(2), 215-235. https://doi.org/10.1080/01495739.2016.1230483 https://doi.org/10.1080/17455030.2017.1337281
  16. Ebrahimi, F., Barati, M.R. and Haghi, P. (2018b), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 24(17), 3809-3818. https://doi.org/10.1177/1077546317711537 https://doi.org/10.1177/1077546317711537
  17. Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019a), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., Int. J., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001
  18. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019b), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134(5), 226. https://doi.org/10.1140/epjp/i2019-12547-8 https://doi.org/10.1140/epjp/i2019-12547-8
  19. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0 https://doi.org/10.1007/s40430-018-1065-0
  20. Fan, Y., Xiang, Y. and Shen, H.-S. (2018), "Nonlinear forced vibration of fg-grc laminated plates resting on visco-pasternak foundations", Compos. Struct., 209, 443-452. https://doi.org/10.1016/j.compstruct.2018.10.084
  21. Fuschi, P., Pisano, A.A. and Polizzotto, C. (2019), "Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory", Int. J. Mech. Sci., 151, 661-671. https://doi.org/10.1016/j.ijmecsci.2018.12.024 https://doi.org/10.1016/j.ijmecsci.2018.12.024
  22. Ghayesh, M.H. and Farajpour, A. (2018), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003 https://doi.org/10.1016/j.ijengsci.2018.04.003
  23. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3d hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665 https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  24. Hosseini, S. and Rahmani, O. (2016), "Free vibration of shallow and deep curved fg nanobeam via nonlocal timoshenko curved beam model", Appl. Phys. A, 122(3), 169. https://doi.org/10.1007/s00339-016-9696-4
  25. Keleshteri, M., Asadi, H. and Wang, Q. (2017), "Large amplitude vibration of fg-cnt reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin-Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035 https://doi.org/10.1016/j.tws.2017.08.035
  26. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014 https://doi.org/10.1016/j.compstruct.2015.08.014
  27. Lu, L., Guo, X. and Zhao, J. (2019), "A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects", Appl. Math. Model., 68, 583-602. https://doi.org/10.1016/j.apm.2018.11.023 https://doi.org/10.1016/j.apm.2018.11.023
  28. Lv, Z., Qiu, Z., Zhu, J., Zhu, B. and Yang, W. (2018), "Nonlinear free vibration analysis of defective fg nanobeams embedded in elastic medium", Compos. Struct., 202, 675-685. https://doi.org/10.1016/j.compstruct.2018.03.068 https://doi.org/10.1016/j.compstruct.2018.03.068
  29. Mahinzare, M., Jannat Alipour, M., Sadatsakkak, S.A. and Ghadiri, M. (2019), "A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano fg circular plate", Mech. Syst. Signal Process., 115, 323-337. https://doi.org/10.1016/j.ymssp.2018.05.043 https://doi.org/10.1016/j.ymssp.2018.05.043
  30. Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M. S. (2019), "Transient response of porous fg nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory", Eur. J. Mech. - A/Solids, 74, 210-220. https://doi.org/10.1016/j.euromechsol.2018.11.004 https://doi.org/10.1016/j.euromechsol.2018.11.004
  31. Mohammadi, M., Mohseni, E. and Moeinfar, M. (2019), "Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory", Appl. Math. Model., 69, 47-62. https://doi.org/10.1016/j.apm.2018.11.047 https://doi.org/10.1016/j.apm.2018.11.047
  32. Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel Wahab, M. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036 https://doi.org/10.1016/j.compositesb.2018.11.036
  33. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the gpl reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041 https://doi.org/10.1016/j.camwa.2018.12.041
  34. Sahmani, S. and Aghdam, M.M. (2018), "Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells", Compos. Part B: Eng., 132, 258-274. https://doi.org/10.1016/j.compositesb.2017.09.004 https://doi.org/10.1016/j.compositesb.2017.09.004
  35. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3d hyperbolic theory for free vibration of fg plates with porosities resting on winkler/pasternak/kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004 https://doi.org/10.1016/j.ast.2017.11.004
  36. Shojaeian, M., Beni, Y.T. and Ataei, H. (2016), "Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory", Acta Astronautica, 118, 62-71. https://doi.org/10.1016/j.actaastro.2015.09.015 https://doi.org/10.1016/j.actaastro.2015.09.015
  37. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013 https://doi.org/10.1016/j.ijengsci.2016.04.013
  38. Simsek, M. and Reddy, J. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002 https://doi.org/10.1016/j.ijengsci.2012.12.002
  39. Tan, Z.-Q. and Chen, Y.-C. (2019), "Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by joule heating using the modified couple stress theory", Compos. Part B: Eng., 161, 183-189. https://doi.org/10.1016/j.compositesb.2018.10.067 https://doi.org/10.1016/j.compositesb.2018.10.067
  40. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (fg-cntrc) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Thermal Stress., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928 https://doi.org/10.1080/01495739.2017.1338928
  41. Zeighampour, H., Tadi Beni, Y. and Botshekanan Dehkordi, M. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-pasternak foundation based on nonlocal strain gradient theory", Thin-Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037 https://doi.org/10.1016/j.tws.2017.10.037
  42. Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040 https://doi.org/10.1016/j.compstruct.2018.09.040
  43. Zok, F.W. and Levi, C.G. (2001), "Mechanical properties of porous-matrix ceramic composites", Adv. Eng. Mater., 3(1-2), 15-23. https://doi.org/10.1002/1527-2648(200101)3:1/2<15::AID-ADEM15>3.0.CO;2-A https://doi.org/10.1002/1527-2648(200101)3:1/2<15::AID-ADEM15>3.0.CO;2-A