DOI QR코드

DOI QR Code

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power

  • Gutierrez-Vargas, Gildardo (Instituto de Investigacion en Metalurgia y Materiales, UMSNH) ;
  • Ruiz, Alberto (Instituto de Investigacion en Metalurgia y Materiales, UMSNH) ;
  • Kim, Jin-Yeon (GWW School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Lopez-Morelos, Victor H. (Instituto de Investigacion en Metalurgia y Materiales, UMSNH) ;
  • Ambriz, Ricardo R. (Instituto Politecnico Nacional, CIITEC-IPN)
  • Received : 2019.02.28
  • Accepted : 2019.05.20
  • Published : 2019.10.25

Abstract

This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.

References

  1. J.-O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8 (1992) 685-700. https://doi.org/10.1179/mst.1992.8.8.685
  2. D. Chandra, L.H. Schwartz, Mossbauer effect study of the $475{\ddag}C$ decomposition of Fe-Cr, Metallurgical Transactions 2 (1971) 511-519. https://doi.org/10.1007/BF02663342
  3. P.J. Grobner, The 885 f (475c) embrittlement of ferritic stainless steels, Metallurgical Transactions 4 (1973) 251-260. https://doi.org/10.1007/BF02649625
  4. F. Iacoviello, F. Casari, S. Gialanella, Effect of "$475^{\circ}C$ embrittlement" on duplex stainless steels localized corrosion resistance, Corros. Sci. 47 (2005) 909-922. https://doi.org/10.1016/j.corsci.2004.06.012
  5. C.-J. Park, H.-S. Kwon, Effects of aging at $475^{\circ}C$ on corrosion properties of tungsten-containing duplex stainless steels, Corros. Sci. 44 (2002) 2817-2830. https://doi.org/10.1016/S0010-938X(02)00079-3
  6. J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795-801. https://doi.org/10.1016/0001-6160(61)90182-1
  7. H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Press. Vessel. Pip. 50 (1992) 179-213. https://doi.org/10.1016/0308-0161(92)90037-G
  8. L. Llanes, A. Mateo, L. Iturgoyen, M. Anglada, Aging effects on the cyclic deformation mechanisms of a duplex stainless steel, Acta Mater. 44 (1996) 3967-3978. https://doi.org/10.1016/S1359-6454(96)00045-6
  9. A.F. Padilha, R.L. Plaut, P.R. Rios, Stainless steel heat treatment, in: G.E. Totten (Ed.), Steel Heat Treatment: Metallurgy and Technologies, CRC Press, 2006.
  10. A. Isalgue, M. Anglada, J. Rodriguez-Carvajal, A. De Geyer, Study of the spinodal decomposition of an Fe-28Cr-2Mo-4Ni-Nb alloy by small-angle neutron scattering, J. Mater. Sci. 25 (1990) 4977-4980. https://doi.org/10.1007/BF00580116
  11. F. Umemura, M. Akashi, T. Kawamoto, Evaluation of IGSCC susceptibility of austenitic stainless steels using electrochemical reactivation method, Boshoku Gijutsu 29 (1980) 163-169.
  12. J.S. Park, Y.K. Yoon, Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method, Scripta Metall. Mater. 32 (1995) 1163-1168. https://doi.org/10.1016/0956-716X(95)00119-G
  13. A.N. Lasseigne, D.L. Olson, H.-J. Kleebe, T. Boellinghaus, Microstructural assessment of nitrogen-strengthened austenitic stainless-steel welds using thermoelectric power, Metall. Mater. Trans. A 36 (2005) 3031-3039. https://doi.org/10.1007/s11661-005-0075-6
  14. W. Morgner, Introduction to thermoelectric nondestructive testing, Mater. Eval. 49 (1991) 1081-1088.
  15. P.B. Nagy, Non-destructive methods for materials' state awareness monitoring, Insight - Non-Destructive Testing and Condition Monitoring 52 (2010) 61-71. https://doi.org/10.1784/insi.2010.52.2.61
  16. Y. Kawaguchi, S. Yamanaka, Applications of thermoelectric power measurement to deterioration diagnosis of nuclear material and its principle, J. Nondestruct. Eval. 23 (2004) 65-76. https://doi.org/10.1023/B:JONE.0000045221.71155.14
  17. Y. Kawaguchi, S. Yamanaka, Mechanism of the change in thermoelectric power of cast duplex stainless steel due to thermal aging, J. Alloy. Comp. 336 (2002) 301-314. https://doi.org/10.1016/S0925-8388(01)01897-7
  18. J. Fulton, B. Wincheski, M. Namkung, Automated Weld Characterization Using the Thermoelectric Method, NASA, Nasa Technical Report Server, 1992.
  19. N.O. Lara, A. Ruiz, C. Rubio, R.R. Ambriz, A. Medina, Nondestructive assessing of the aging effects in 2205 duplex stainless steel using thermoelectric power, NDTE Int. 44 (2011) 463-468. https://doi.org/10.1016/j.ndteint.2011.04.007
  20. N. Ortiz, F.F. Curiel, V.H. Lopez, A. Ruiz, Evaluation of the intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with thermoelectric power measurements, Corros. Sci. 69 (2013) 236-244. https://doi.org/10.1016/j.corsci.2012.12.008
  21. J. Hu, P.B. Nagy, On the role of interface imperfections in thermoelectric nondestructive materials characterization, Appl. Phys. Lett. 73 (1998) 467-469. https://doi.org/10.1063/1.121902
  22. K.L. Weng, H.R. Chen, J.R. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel, Mater. Sci. Eng. A 379 (2004) 119-132. https://doi.org/10.1016/j.msea.2003.12.051
  23. G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects, NDTE Int. 94 (2018) 101-108. https://doi.org/10.1016/j.ndteint.2017.12.004
  24. A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel, J. Mater. Sci. 32 (1997) 4533-4540. https://doi.org/10.1023/A:1018669217124
  25. H. Kokawa, M. Shimada, Y.S. Sato, Grain-boundary structure and precipitation in sensitized austenitic stainless steel, JOM 52 (2000) 34-37.
  26. S. Rahimi, D.L. Engelberg, T.J. Marrow, A new approach for DL-EPR testing of thermo-mechanically processed austenitic stainless steel, Corros. Sci. 53 (2011) 4213-4222. https://doi.org/10.1016/j.corsci.2011.08.033
  27. R. Silva, L.F.S. Baroni, C.L. Kugelmeier, M.B.R. Silva, S.E. Kuri, C.A.D. Rovere, Thermal aging at $475^{\circ}C$ of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corros. Sci. 116 (2017) 66-73. https://doi.org/10.1016/j.corsci.2016.12.014
  28. J.P. Massoud, J.-F. Coste, J.-M. Leborgne, D. Aiguier, P. Viral, Thermal Aging of PWR Duplex Stainless Steel Components Development of a Thermoelectrical Technique as a Non Destructive Evaluation Method of Aging, 7th International Conference on Nuclear Engineering, JSME, Tokyo, Japan, 1999, pp. 1-9.
  29. K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng. A 527 (2010) 3904-3912. https://doi.org/10.1016/j.msea.2010.02.069