Effects of changes in banner size on acoustic environments in multipurpose halls for broadcasting

방송용 다목적 홀에서 배너 가변에 따른 음향 환경 변화

  • 박호철 (한양대학교 건축공학과 건축음향연구실) ;
  • 서로사 (한양대학교 건축공학과 건축음향연구실) ;
  • 서춘기 (한양대학교 건축공학과 건축음향연구실) ;
  • 전진용 (한양대학교 건축공학과 건축음향연구실)
  • Received : 2019.07.01
  • Accepted : 2019.09.18
  • Published : 2019.09.30


When used for broadcasting, multipurpose halls need to accommodate various types of programs such as speeches, Korean traditional music, musicals, pop music, and concerts. Therefore, multipurpose halls must meet a wide range of electric and architectural acoustic demands. However, there are few ways to alter acoustic environments for multipurpose halls, given these different demands. The current study investigates the effects of banners on acoustic environments in the presence of an acoustic shell or electric acoustic system. The results indicate that the installation of a 15% banner of wall area could vary the range of reverberation time ($T_{30}$) by 0.12 s, EDT (Early Decay Time) by 0.15 s, clarity of music ($C_{80}$) by 0.76 dB, and clarity of speech ($D_{50}$) by 6.43 % under different measurement circumstances. A computer simulation that enlarges the banner size to 40 % of the wall area varies the reverberation time from 0.11 s to 0.55 s depending on the room environment.

스피치, 국악, 뮤지컬, 대중음악과 콘서트까지 다양한 장르의 공연이 이루어지는 방송용 다목적 홀의 경우 공연에 필요한 전기, 건축 음향적 요구 조건이 다양하다. 하지만 실제 음향 환경 가변을 위한 효율적인 운용 방법은 많지 않다. 본 연구는 무대 반사판의 설치 유 무와 전기 음향 사용 조건하에서 배너의 가변에 따른 홀의 음향 환경 변화를 살펴보았다. 그 결과 벽체 면적의 15 %에 해당하는 배너를 설치한 실제 측정에서 잔향 시간(Reverberation Time, $T_{30}$)은 최대 0.12 s, 초기감쇠시간(Early Decay Time, EDT)은 0.15 s, 음악 명료도(Clarity, $C_{80}$)는 0.76 dB, 음성 명료도(Definition, $D_{50}$)는 6.43 % 변하였다. 배너의 면적을 확장시킨 컴퓨터 시뮬레이션을 통해 전체 벽체 면적의 40 %에 해당하는 배너를 설치할 경우 잔향 시간은 0.11 s에서 최대 0.55 s까지 가변되는 것을 확인했다.



Grant : 국악기 방사특성을 통한 악기 배치형식 및 국악 전용홀 음향설계 표준안 연구

Supported by : 한국연구재단


  1. M. Barron, Auditorium Acoustics and Architeuctural design (Spon Press, London, 2009), pp. 452-456.
  2. W. J. Cavanaugh, G. C. Tocci, and J. A. Wilkes, Architectural Acoustics: Principles and Practice (John Wiley & Sons, Inc. New York, 2010), pp. 135-136.
  3. W. C. Sabine, Collected Papers on Acoustics, Cambridge (Harvard University Press, New York, 1922), pp. 12-16.
  4. M. Long, Architectural Acoustics (Elsevier Academic Press, MA, San Diego, 2006), pp. 728-729.
  5. L. L. Beranek, Concert Halls and Opera Houses: Music, Acoustics, and Architecture (Springer, New York 1996), pp. 70-73.
  6. ISO3382-1, "Acousts-Measurement of Room Acoustic Parameters-Part1: Performance Spaces," (2009).
  7. The StageRight Products page, Http://performance.stageright.Com/Products/. (2019)
  8. A. Astolfi, V. Corrado, and A. Griginis, "Comparison between measured and calculated parameters for the acoustical characterization of small classrooms," Appl. Acoust. 69, 966-976 (2008).
  9. F. Brinkmann, L. Aspock, D. Ackermann, S. Lepa, M. Vorlander, and S. Weinzierl, "A round robin on room acoustical simulation and auralization," J. Acoust. Soc. Am. 145, 2746 (2019).
  10. Y. H. Kim, H. M. Lee, C. K. Seo, and J. Y. Jeon, "Investigating the absorption characteristics of open ceilings in multi-purpose halls using a 1:25 scale model," Appl. Acoust., 71, 473-478 (2010).
  11. U. Berardi, G. Iannace, and C. Ianniello, "Acoustic intervention in a cultural heritage : The chapel of the royal palace in Caserta, Italy," Buildings, 6, 1-14 (2016).
  12. H. Park and J. Y. Jeon, "The effects of light equipment on the acoustic characteristics of a TV studio," Build. Environ. 120, 53-63 (2017).
  13. N. Werner, E. Robert, A. Christian, and N.W. Adelmanlarsen, "Suitable reverberation time for halls for rock and pop music," J. Acoust. Soc. Am. 127, 247-255 (2010).
  14. R. E. Berg and D. G. Stork, The Physics of sound (Prentice-Hall, New Jersey, 1982), pp. 225-227.
  15. Y. J. Jo, "Research an the form of Korean traditional performance hall," J. National Center of Korean traditional Performing Arts, 18, 219-242 (2008).
  16. J. Y. Jeon, J. Kim, and Y. Kim, "Selection of scale model materials for acoustical evaluation of 1: 50 multipurpose halls" (in Korean), J. Acoust. Soc. Kr. 28, 781-789 (2009).
  17. S. Schoenwald and K. Eggenschwiler, "Sound absorption of textile curtains - theoretical models and validations by experiments and simulations," Text. Res. J. 88, 36-48 (2018).
  18. J. Y. Jeon, H. S. Jang, and H. I. Jo, "Acoustic evaluation of orchestra occupancies in concert halls : Effect of sound absorption by orchestra members on audience acoustics," Build. Environ. 143, 349-357 (2018).
  19. T. Kim, C. Park, J. Park, and C. Hann, "Comparison of acoustic performance eepending on the location of sound absorptive and diffuser in small auditoriums using 1/10 scale models" (in Korean), J. Acoust. Soc. Kr. 34, 146-156 (2015).
  20. Y. H. Kim, J. H. Kim, and J. Y. Jeon, "Scale model investigations of diffuser application strategies for scale model investigations of diffuser application strategies for acoustical design of performance venues," Acta Acust. United with Acust. 97, 791-799 (2011).