Synthesis of Hydroxyapatite Using a Cationic Surfactant

양이온성 계면활성제를 이용한 수산화인회석 합성

  • Lee, Keunyoung (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
  • 이근영 (경상대학교 화학과, 경상대학교 기초과학연구소) ;
  • 권기영 (경상대학교 화학과, 경상대학교 기초과학연구소)
  • Received : 2019.09.09
  • Accepted : 2019.09.25
  • Published : 2019.10.10


Hydroxyapatite (HAP) containing hexadecyltrimethylammonium chloride (CTAC) as a cationic surfactant was prepared by a precipitation method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and micropore physisorption analyzer were used for characterizing the crystal phase, morphology and specific surface area of HAP and CTAC-HAP. After thermal treatment, the specific surface area of both pure HAP and CTAC-HAP were reduced. The sharp rod morphology of CTAC-HAP was changed into a round shape with a smaller aspect ratio after the heat treatment. The morphological change by thermal treatment was also observed in pure HAP. Therefore, the morphological change and decrease of the specific surface area suggested that pores from the removal of CTAC during thermal treatment were not retained.


Supported by : 한국기초과학지원연구원


  1. B. P. Binks, A. Desforges, and D. G. Duff, Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant, Langmuir, 23, 1098-1106 (2007).
  2. P. Xiaogang, M. Liberato, Y. Weidong, W. Juanita, S. Erik, K. Andreas, and A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature, 404, 59-61 (2000).
  3. N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 13, 1389-1393 (2001).<1389::AID-ADMA1389>3.0.CO;2-F
  4. M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964).
  5. W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998).
  6. G. Wei and P. X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25, 4749-4757 (2004).
  7. S. Deville, E. Saiz, and A. P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials, 27, 5480-5489 (2006).
  8. W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman, and J. Abram, Hydroxyapatite reinforced polyethylene - A mechanically compatible implant material for bone replacement, Biomaterials, 2, 185-186 (1981).
  9. G. Bernardi, Chromatography of nucleic acids on hydroxyapatite, Nature, 206, 779-783 (1965).
  10. D. N. Misra, Interaction of citric acid with hydroxyapatite: Surface exchange of ions and precipitation of calcium citrate, J. Dent. Res., 75, 1418-1425 (1996).
  11. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).
  12. K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002).
  13. M. I. Dominguez, F. Romero-Sarria, M. A. Centeno, and J. A. Odriozola, Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal., B, 87, 245-251 (2009).
  14. J. W. Jaworski, S. Cho, Y. Kim, J. H. Jung, H. S. Jeon, B. K. Min, and K. Y. Kwon, Hydroxyapatite supported cobalt catalysts for hydrogen generation, J. Colloid Interface Sci., 394, 401-408 (2013).
  15. S. Kim, J. H. Jung, D. H. Kim, D. K. Woo, J. B. Park, M. Y. Choi, and K. Y. Kwon, Preparation of ruthenium incorporated heterogeneous catalysts using hydroxyapatite as catalytic supports for aerobic oxidation of alcohols, Bull. Korean Chem. Soc., 34, 221-224 (2013).
  16. K. Lin, J. Pan, Y. Chen, R. Cheng, and X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater., 161, 231-240 (2009).
  17. W. Weng and J. L. Baptista, Sol-gel derived porous hydroxyapatite coatings, J. Mater. Sci. Mater. Med., 9, 159-163 (1998).
  18. V. M. Rusu, C. H. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M. G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials, Biomaterials, 26, 5414-5426 (2005).
  19. E. Schroder, T. Jonsson, and L. Poole, Hydroxyapatite chromatography: Altering the phosphate-dependent elution profile of protein as a function of pH, Anal. Biochem., 313, 176-178 (2003).
  20. S. J. Son, X. Bai, and S. B. Lee, Inorganic hollow nanoparticles and nanotubes in nanomedicine: Part 1. Drug/gene delivery applications, Drug Discov. Today, 12, 650-656 (2007).
  21. V. S. Komlev, S. M. Barinov, and E. V. Koplik, A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials, 23, 3449-3454 (2002).
  22. Y. Li, W. Tjandra, and K. C. Tam, Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates, Mater. Res. Bull., 43, 2318-2326 (2008).
  23. N. F. Mohammad, R. Othman, and F. Yee-Yeoh, Nanoporous hydroxyapatite preparation methods for drug delivery applications, Rev. Adv. Mater. Sci., 38, 138-147 (2014).