DOI QR코드

DOI QR Code

Optimization of MOF-235 Synthesis by Analysis of Statistical Design of Experiment

통계학적 실험계획법 해석을 통한 MOF-235 합성 최적화

  • Chung, Mingee (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 정민지 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2019.08.20
  • Accepted : 2019.09.04
  • Published : 2019.10.10

Abstract

Statistical design of experiments was performed to optimize MOF-235 synthesis process. Concentrations of terephthalic acid (TPA), iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) and ethanol were important factors to develop the crystal structure of MOF-235. MOF-235 was synthesized with various concentrations of the listed chemicals above and the crystallinity was measured by XRD. The effect of the composition on the synthesis of MOF-235 was evaluated using a statistical analysis. For the variance analysis using F-test, the concentration of ethanol showed the greatest effect on the crystallinity and TPA the least influential. A regression model for predicting the crystallinity of MOF-235 was derived and the prediction results for two synthetic variables were presented using contour plots. Finally, the crystallinity was predicted by a mixture method with $FeCl_3$, ethanol and DMF.

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, Nature, 423, 705-714 (2003). https://doi.org/10.1038/nature01650
  2. N. Stock and S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 1122, 933-969 (2012),
  3. Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329(2009). https://doi.org/10.1039/b802258p
  4. Y. F. Song and L. Cronin, Postsynthetic covalent modification of metal-organic framework (MOF) materials, Angew. Chem. Int. Ed., 47, 4635-4637 (2008). https://doi.org/10.1002/anie.200801631
  5. X. Li, J. Zhang, and W. Li, MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination, J. Ind. Eng. Chem., 44, 146-154 (2016). https://doi.org/10.1016/j.jiec.2016.08.024
  6. A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, and F. Verpoort, Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations, Chem. Soc. Rev., 44, 6804-6849 (2015). https://doi.org/10.1039/C4CS00395K
  7. J. Kim, S. N. Kim, H. G. Jang, G. Seo, and W. S. Ahn, $CO_2$ cycloaddition of styrene oxide over MOF catalysts, Appl. Catal. A, 453, 175-180 (2013). https://doi.org/10.1016/j.apcata.2012.12.018
  8. M. Anbia and S. Sheykhi, Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption, J. Ind. Eng. Chem., 19, 1583-1586 (2013). https://doi.org/10.1016/j.jiec.2013.01.026
  9. K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, and M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship, Chem. Soc. Rev., 46, 3402-3430 (2017). https://doi.org/10.1039/C7CS00153C
  10. Y.-R. Lee, S.-M. Cho, and W.-S. Ahn, Effects of polydimethyl- siloxane coating of Ni-MOF-74 on CH4 storage, Korean J. Chem. Eng., 35, 1542-1546 (2018). https://doi.org/10.1007/s11814-018-0049-1
  11. N. Jiang, Z. Deng, S. Liu, C. Tang, and G. Wang, Synthesis of metal organic framework (MOF-5) with high selectivity for $CO_2/N_2$ separation in flue gas by maximum water concentration approach, Korean J. Chem. Eng., 33, 2747-2755 (2016). https://doi.org/10.1007/s11814-016-0092-8
  12. A. C. Sudik, A. P. Côte, and O.M. Yaghi, Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology, Inorg. Chem., 44, 2998-3000 (2005). https://doi.org/10.1021/ic050064g
  13. M. Anbia, V. Hoseini, and S. Sheykhi, Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235), J. Ind. Eng. Chem., 18, 1149-1152 (2012). https://doi.org/10.1016/j.jiec.2012.01.014
  14. E. Haque, J. W. Jun, and S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185, 507-511 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.035
  15. N. T. Tran, D. Kim, K. S. Yoo, and J. Kim, Synthesis of Cu-doped MOF-235 for the degradation of methylene blue under visible light irradiation, Bull. Korean Chem. Soc., 40, 112-117 (2019). https://doi.org/10.1002/bkcs.11650
  16. X. Tao, C. Sun, Y. Han, L. Huang, and D. Xu, The plasma assisted preparation of Fe-MOFs with high adsorption capacity, Cryst. Eng. Comm., 21, 2541-2550 (2019). https://doi.org/10.1039/C9CE00015A
  17. R. E. Walpole, K. E. Ye, Raymond, H. Myers, and S. L. Myers, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, USA (2012).
  18. R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments, with Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, New Jersey, USA (2003).