Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Received : 2019.07.30
  • Accepted : 2019.08.11
  • Published : 2019.10.10


Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.


Supported by : National Research Foundation of Korea (NRF)


  1. Z. T. Hijran, World phosphate industry, Iraqi Bull. Geol. Min., 7, 5-23 (2017).
  2. I. Steen, Phosphorus availability in the 21st century: Management of a non-renewable resource, Phosphorus Potassium, 217, 25-31 (1998).
  3. K. B. Biplob, I. Katsutoshi, N. G. Kedar, H. Hiroyuki, O. Keisuke, and K. Hidetaka, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour. Technol., 99, 8685-8690 (2008).
  4. K. G. Ravindra, B. Sushmita, K. G. Pavan, and M. C. Chattopadhyaya, Remediation technologies for phosphate removal from wastewater: An overview. advances in environmental research, Nova Science Publishers, Inc., 36, 177-200 (2014).
  5. T. B. Joshua, N. Edmond, D. O. Irina, M. Andrew, and W. G. David, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 6, 1-15 (2018).
  6. A. Oehmen, P. C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L. L. Blackall, and M. A. M. Reis, Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 41, 2271-2300 (2007).
  7. L. E. De-Bashan and Y. Bashan, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003), Water Res., 38, 4222-4246 (2004).
  8. K. Okano, M. Uemoto, J. Kagami, K. Miura, T. Aketo, and M. Toda, Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate bhydrates (A-CSHs), Water Res., 47, 2251-2259 (2013).
  9. P. Loganathan, V. Saravanamuthu, J. Kandasamy, and S. B. Nanthi, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol., 44, 847-907 (2014).
  10. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Selective adsorption of phosphate from sea water and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297, 426-433 (2006).
  11. G. Zhang, H. Liu, R. Liu, and J. Qu, Removal of phosphate from water by a Fe-Mn binary oxide adsorbent, J. Colloid Interface Sci., 335, 168-174 (2009).
  12. S. Karaca, A. Gurses, M. Ejder, and M. Acikyildiz, Adsorptive removal of phosphate from aqueous solutions using raw and calcined dolomite, J. Hazard. Mater., B128, 273-279 (2006).
  13. S. M. Ashekuzzaman and J. Jia-Qian, Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water, Chem. Eng. J., 246, 97-105 (2014).
  14. J. K. Edzwald, D. C. Toensing, and M. C. Y. Leung, Phosphate adsorption reactions with clay minerals, Environ. Sci. Technol., 10, 485-490 (1976).
  15. X. Cui, X. Dai, K. Y. Khan, T. Li, X. Yang, and Z. He, Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata, Bioresour. Technol., 218, 1123-1132 (2016).
  16. Q. Yin, R. Wang, and Z. Zhao, Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water, J. Clean. Prod., 176, 230-240 (2018).
  17. R. Awual, A. Jyo, S. A. El-Safty, M. Tamada, and N. Seka, A weak-fibrous anion exchanger effective for rapid phosphate removal from water, J. Hazard. Mater., 188, 164-171 (2011).
  18. E. Ou, J. Zhou, S. Mao, J. Wang, F. Xia, and L. Min, Higly efficient removal of phosphate by lanthanum-doped mesoporous $SiO_2$, Colloids Surf. A, 308, 47-53 (2007).
  19. X. Chen, H. Kong, D. Wu, X. Wang, and Y. Lin, Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal, J. Environ. Sci., 21, 575-580 (2009).
  20. D. C. Southam, T.W. Lewis, A. J. McFarlane, and J. H. Johnston, Amorphous calcium silicate as a chemisorbent for phosphate, Curr. Appl. Phys., 4, 355-358 (2004).
  21. K. Okano, M. Shimpei, K. Ayaka, T. Hiroyuki, A. Tsuyoshi, T. Masaya, H. Kohsuke, and O. Hisao, Amorphous calcium silicate hydrates and their possible mechanism for recovering phosphate from wastewater, Sep. Purif. Technol., 144, 63-69 (2015).
  22. M. M. Abd El-Latif, M. F. El-Kady, M. I. Amal, and E. O. Mona, Alginate/ polyvinyl alcohol-kaolin composite for removal of methylene blue from aqueous solution in a batch stirred tank reactor, J. Am. Sci., 6(5), 280-292 (2010).
  23. S. Cheng, Z. Yaqian, L. Ranbin, M. Yi, and M. David, Adsorption of phosphorus with calcium alginate beads containing drinking water treatment residual, Water Sci. Technol., 78(9), 1980-1989 (2018).
  24. D. Shilin, F. Dexin, P. Zishan, L. Bin, K. Li, W. Han, Z. Qian, S. Qiushi, and J. Fangying, Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal, Sci. Total Environ., 645, 937-945 (2018).
  25. A. Farid, A. Linnea, O. Steven, H. Niklas, and B. Lennart, Structuring adsorbents and catalysts by processing of porous powders, J. Eur. Ceram. Soc., 34, 1643-1666 (2014).
  26. W. Jinxing, L. Jidong, S. Li, and G. Sha, PVA/CS and PVA/CS/Fe gel beads' synthesis mechanism and their performance in cultivating anaerobic granular sludge, Chemosphere, 219, 130-139 (2019).
  27. Z. Yang, H. Dongshuai, M. Hegoi, O. Carlos, G. Guoqing, J. M. M. Paulo, and L. Jiaping, Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study, ACS Appl. Mater. Interfaces, 46, 41014-41025 (2017).
  28. D. C. Southam, W. L. Trevor, J. M. Andrew, T. Borrmann, and H. J. Jim. Calcium-phosphorus interactions at a nano-structured silicate surface, J. Colloid Interface Sci., 319, 489-497 (2008).
  29. F. Dexin, H. Liping, F. Zhuoyao, Z. Qian, S. Qiushi, L. Yimeng, X. Xiaoyi, and I. J. Fangy, Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater, Chem. Eng. J., 354, 1-11 (2018).
  30. S. M. Ragheb, Phosphate removal from aqueous solution using slag and fly ash, Housing and Building National Research Center Journal (HBRC J.), 9, 270-275 (2013).
  31. H. Moussout, H. Ahlafi, M. Aazza, and H. Maghat, Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models, Karbala Int. J. Mod. Sci., 4(2), 244-254 (2018).
  32. R. Dariush, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3, 55-60 (2013).
  33. N. Salman, B. Vijay, M. Jiri, W. Jakub, B. Promoda, and A. Azeem, Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media, Fibers Polym., 17, 1245-1255 (2016).
  34. J. Das, B. S. Patra, N. Baliarsingh, and K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32, 252-260 (2006).
  35. R. P. Radheshyam, G. Prabuddha, B. Lalhmunsiama, C. B. Hari, and S. M. Lee, Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate, Sci. Total Environ., 572, 1222-1230 (2016).