DOI QR코드

DOI QR Code

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
  • Received : 2019.05.24
  • Accepted : 2019.08.05
  • Published : 2019.10.10

Abstract

An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. H. J. Choi and S. W. Yu, Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution, Korean J. Chem. Eng., 35(11), 2198-2206 (2018). https://doi.org/10.1007/s11814-018-0140-7
  2. H. J. Choi, S. W. Yu, and K. H. Kim, Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Inst. Chem. Eng., 63, 482-489 (2016). https://doi.org/10.1016/j.jtice.2016.03.005
  3. H. J. Choi, Removal of Pb(II) from aqueous solution using hybrid adsorbent of sericite and spent coffee grounds, Appl. Chem. Eng., 29(5), 571-580 (2018). https://doi.org/10.14478/ace.2018.1056
  4. S. W. Yu and H. J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78(4), 837-847 (2018). https://doi.org/10.2166/wst.2018.354
  5. N. B. Singh, G. Nagpal, S. Agrawal, and Rachna, Water purification by using adsorbents: A review, Environ. Technol. Innov., 11, 187-240 (2018). https://doi.org/10.1016/j.eti.2018.05.006
  6. J. J. Lee, Study on isotherm, kinetic and thermodynamic parameters for adsorption of methyl green using activated carbon, Appl. Chem. Eng., 30(2), 190-197 (2019). https://doi.org/10.14478/ACE.2019.1001
  7. I. Anastopoulos, M. Karamesouti, A. C. Mitropoulos, and G. Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq., 229, 555-565 (2017). https://doi.org/10.1016/j.molliq.2016.12.096
  8. B. G. Alhogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions, Sustain. Chem. Pharm., 6, 21-25 (2017). https://doi.org/10.1016/j.scp.2017.06.004
  9. A. N. Babu, D. S. Reddy, G. S. Kumar, K. Ravindhranath, and G. V. K. Mohan, Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent, J. Environ. Manag., 218, 602-612 (2018). https://doi.org/10.1016/j.jenvman.2018.04.091
  10. F. J. Cerino-Cordova, P. E. Diaz-Flores, R. B. Garcia-Reyes, E. Soto-Regalado, R. Gomez-Gonzalez, M. T. Garza-Gonzalez, and E. Bustamante-Alcantara, Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grounds, Int. J. Environ. Sci. Technol., 10, 611-622 (2013). https://doi.org/10.1007/s13762-013-0198-z
  11. N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, Adsorption of cadimium from aqueous solution onto untreated coffee geounds: Equibrium, kinetics and thermodynamin, J. Hazard. Mater, 184, 126-134 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.014
  12. A. A. Edathil, I. Shittu, J. H. Zain, F. Banat, and M. A. Haija, Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions, J. Environ. Chem. Eng., 6(2), 2390-2400 (2018). https://doi.org/10.1016/j.jece.2018.03.041
  13. R. Gomez-Gozalez, F. J. Cerino-Cordova, A. M. Garcia-Leon, E. Soto-Regalado, N. E. Davila-Guzman, and J. J. Salazar-Rabago, Lead adsorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN, J. Taiwan Inst. Chem. Eng., 68, 201-210 (2016). https://doi.org/10.1016/j.jtice.2016.08.038
  14. E. F. Lessa, M. L. Nunes, and A. R. Fajardo, Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water, Carbohydr. Polym., 189, 257-266 (2018). https://doi.org/10.1016/j.carbpol.2018.02.018
  15. M. Li, Z. Zhang, R. Li, J. J. Wang, and A. Ali, Removal of Pb(II) and Cd(II) ins from aqueous solution by thiosemicarbazide modified chitosan, Int. J. Biol. Macromol., 86, 876-884 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.027
  16. R. M. Ali, H. A. Hamad, M. M. Hussein, and G. F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91, 317-332 (2016). https://doi.org/10.1016/j.ecoleng.2016.03.015
  17. A. Heidari, H. Younesi, Z. Mehraban, and H. Heikkinen, Selective adsorption of Pb(II), Cd(II) and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles, Int. J. Biol. Macromol., 61, 251-263 (2013). https://doi.org/10.1016/j.ijbiomac.2013.06.032
  18. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
  19. H. Freundlich, Adsorptions technik, by Franz Krzil, J. Phys. Chem., 40(6), 857-858 (1936). https://doi.org/10.1021/j150375a022
  20. M. I. Tempkin and V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys. Chem. URSS, 12, 327-356 (1940).
  21. M. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60(2), 235-241 (1960). https://doi.org/10.1021/cr60204a006
  22. S. Y. Ho and G. McKay, Application of kinetic models to the of copper(II) on to peat, Adsorp. Sci. Technol., 20(8), 797-815 (2002). https://doi.org/10.1260/026361702321104282
  23. F. C. Wu, R. L. Tseng, and R. S. Juang, Characteristics of elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chem. Eng. J., 150(2-3), 366-373 (2009). https://doi.org/10.1016/j.cej.2009.01.014
  24. F. C. Wu, R. L. Tseng, and R. S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153, 1-8 (2009). https://doi.org/10.1016/j.cej.2009.04.042
  25. T. N. Weber and R. K. Chakravarti, Pore and solid diffusion models for fixed bed adsorbers, AIChE J., 20, 228-238 (1974). https://doi.org/10.1002/aic.690200204
  26. S. Alpat, S. K. Alpat, B. H. Cadirci, O. Ozbayrak, and I. Yasa, Effects of biosorption parameter: Kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp, Electronic J. Biotechnol., 13(5), 1-19 (2010).
  27. S. Y. Lee and H. J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag., 209, 382-392 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080
  28. C. Appel, L. Q. Ma, R. D. Rhue, and E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113, 77-93 (2003). https://doi.org/10.1016/S0016-7061(02)00316-6
  29. Z. U. Ahmad, L. Yao, J. Wang, D. D. Gang, F. Islam, Q. Lian, and M. E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: Characterization, adsorption study and adsorption mechanism, Chem. Eng. J., 359, 814-826 (2019). https://doi.org/10.1016/j.cej.2018.11.174
  30. I. Sargin and G. Arslan, Chitosan/sporopollenin microcapsules: Preparation, characterization and application in heavy metal removal, Int. J. Biol. Macromol., 75, 230-238 (2015). https://doi.org/10.1016/j.ijbiomac.2015.01.039
  31. S. S. Salih and T. K. Ghosh, Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite, J. Environ. Chem. Eng., 6(1), 435-443 (2018). https://doi.org/10.1016/j.jece.2017.12.037
  32. W. Nitayaphat, Chitosan/coffee residue composite beads for removal of reactive dye, Mater. Today Proc., 4, 6274-6283 (2017). https://doi.org/10.1016/j.matpr.2017.06.127
  33. J. Maity and S. K. Ray, Chitosan based nano composite adsorbent-Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water, Carbohydr. Polym., 182, 159-171 (2018). https://doi.org/10.1016/j.carbpol.2017.10.086
  34. S. Y. Baek, V. H. Nguyen, and Y.H. Kim, Preparation of zeolite coated with metal-ferrite and adsorption characteristics of Cu(II), Appl. Chem. Eng., 30(1), 54-61 (2019). https://doi.org/10.14478/ACE.2018.1111
  35. C. H. Wu, C. Y. Kuo, and S. S. Guan, Adsorption kinetics of lead and zinc ions by coffee residues, Pol. J. Envion. Stud., 24, 761-767 (2015).
  36. Y. Lu, J. He, and G. Luo, An improved synthesis of chitosan bead for Pb(II) adsorption, Chem. Eng. J., 226, 271-278 (2013). https://doi.org/10.1016/j.cej.2013.04.078
  37. G. Zhang, R. Qu, C. Sun, C. Ji, H. Chen, C. Wang, and Y. Niu, Adsorption for metal ions of chitosan coated cotton fiber, J. Appl. Polym. Sci., 110, 2321-2327 (2010).
  38. D. Wu, Y. Wang, Y. Li, Q. Wei, L. Hu, T. Yan, R. Feng, L. Yan, and B. Du, Phosphorylated chitosan/$CoFe_2O_4$ composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: Adsorption performance and mechanism studies, J. Mol. Liq., 277, 181-188 (2019). https://doi.org/10.1016/j.molliq.2018.12.098
  39. M. Mozaffari, M. R. S. Emami, and E. Binaeian, A novel thiosemicarbazide modified chitosan (TSFCS) for efficiency removal of Pb(II) and methyl red from aqueous solution, Int. J. Biol. Macromol., 123, 457-467 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.106
  40. Z. Aksu and E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35(3), 223-240 (2004). https://doi.org/10.1016/S1383-5866(03)00144-8
  41. M. Horsfall and A. I. Spitt, Effects of temperature on the sorption of $Pb^{2+}$ and $Cd^{2+}$ from aqueous solution by caladium bicolor (Wild Cocoyam) biomass, Afr. J. Biotechnol., 4(2), 191-196 (2005).