DOI QR코드

DOI QR Code

Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds

유기인 계열 독성화합물 분해를 위한 촉매반응의 최신 연구 동향

  • Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy) ;
  • Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy)
  • 계영식 (육군사관학교 물리화학과) ;
  • 정근홍 (육군사관학교 물리화학과) ;
  • 김동욱 (육군사관학교 물리화학과)
  • Received : 2019.08.30
  • Accepted : 2019.09.19
  • Published : 2019.10.10

Abstract

Catalysts based on organic compounds, transition metal and metal-organic frameworks (MOFs) have been applied to degrade or remove organophosphorus toxic compounds (OPs). During the last 20 years, various MOFs were designed and synthesized to suit application purposes. MOFs with $Zr_6$ based metal node and organic linker were widely used as catalysts due to their tunability for the pore size, porosity, surface area, Lewis acidic sites, and thermal stability. In this review, effect on catalytic efficiency between MOFs properties according to the structure, stability, particle size, number of connected-ligand, organic functional group, and so on will be discussed.

Acknowledgement

Supported by : 화랑대연구소

References

  1. S. Chauhan, S. Chauhan, R. D'Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik, Chemical warfare agents, Environ. Toxicol. Pharmacol., 26, 113-122 (2008). https://doi.org/10.1016/j.etap.2008.03.003
  2. J. Lavoie, S. Srinivasan, and R. Nagarajan, Using cheminformatics to find simulants for chemical warfare agents, J. Hazard. Mater., 194, 85-91 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.077
  3. M. Enserink, U. N. taps special labs to investigate Syrian attack, Science, 341, 1050-1051 (2013). https://doi.org/10.1126/science.341.6150.1050
  4. A. M. Howitt and R. L. Pangi, Countering Terrorism: Dimension of Preparedness, 356-357, The MIT Press, Cambridge, Massachusetts, USA (2003).
  5. T. Nakagawa and A. T. Tu, Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia, Forensic Toxicol., 36, 542-544 (2018). https://doi.org/10.1007/s11419-018-0426-9
  6. L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214, 167-181 (2005). https://doi.org/10.1016/j.tox.2005.06.011
  7. M. Bennett, TICs, TIMs, and terrorists commodity chemicals take on a sinister role as potential terrorist tools, Todays Chemist at Work, 12, 21-26 (2003).
  8. A. W. Khan, S. Kotta, S. H. Ansari, J. Ali, and R. K. Sharma, Recent advances in decontamination of chemical warfare agents, Def. Sci. J., 63, 487-496 (2013). https://doi.org/10.14429/dsj.63.2882
  9. K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011). https://doi.org/10.1021/cr100193y
  10. F. M, Raushel, Catalytic detoxification, Nature, 469, 310-311 (2011). https://doi.org/10.1038/469310a
  11. B. M. Smith, Catalytic methods for the destruction of chemical warfare agents under ambient conditions, Chem. Soc. Rev., 37, 470-478 (2008). https://doi.org/10.1039/B705025A
  12. Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992). https://doi.org/10.1021/cr00016a003
  13. N. J. Rabkin, United States General Accounting Office Reports: DOD should Eliminate DS2 from Its Inventory of Decontaminants, GAO, Gaithersburg, Maryland, USA (1990).
  14. M. Rani and U. Shanker, Degradation of traditional and new emerging pesticides in water by nanomaterials: Recent trends and future recommendations, Int. J. Environ. Sci. Technol., 15, 1347-1380 (2018). https://doi.org/10.1007/s13762-017-1512-y
  15. D. B. Kim, B. Gweon, S. Y. Moon, and W. Choe, Decontamination of the chemical warfare agent simulant dimethylmethylphosphonate by means of large-area low-temperature atmospheric pressure plasma, Curr. Appl. Phys., 9, 1093-1096 (2009). https://doi.org/10.1016/j.cap.2008.12.006
  16. R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, o-Iodosobenzoate: Catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983). https://doi.org/10.1021/ja00341a092
  17. H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002). https://doi.org/10.1021/cr9405462
  18. R. A. Moss, K. W. Alwis, and J. S. Shin, Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates, J. Am. Chem. Soc., 106, 2651-2655 (1984). https://doi.org/10.1021/ja00321a027
  19. R. A. Moss, D. Bolikal, H. D. Durst, and J. W. Hovanec, Polymer-bound iodosobenzoate reagents for the cleavage of reactive phosphates, Tetrahedron Lett., 29, 2433-2436 (1988). https://doi.org/10.1016/S0040-4039(00)87900-9
  20. R. A. Moss and Y. C. Chung, Immobilized iodosobenzoate catalysts for the cleavage of reactive phosphates, J. Org. Chem., 55, 2064-2069 (1990). https://doi.org/10.1021/jo00294a019
  21. I. W. Yang, J. S. Kim and Y. J. Chung, Catalytic hydrolysis reactions of alkylammonium IBA, J. Korean. Ind. Eng. Chem., 13, 407-410 (2002).
  22. I. W. Yang and D. G. Kang, A study on the synthesis of bis-IBA derivatives and their catalytic effects on the hydrolysis reaction of nerve agents, J. Korean Inst. Mil. Sci. Technol., 2, 73-81 (1999).
  23. K. K. Ghosh, D. S Sinha, M. L. Satnami, A. K. Shrivastave, D. K. Dubey, and G. L. Mundhara, Kinetic study of hydrolytic decomposition of organophosphates and thiophosphate by N-hydroxyamides in cationic micellar media, Indian J. Chem., 45, 726-730 (2006).
  24. R. K. Kalakuntla, T. Wille, R. Le Provost, S. Letort, G. Reiter, S. Muller, H. Thiermann, F. Worek, G. Gouhier, O. Lafont, and F. Estour, New modified-cyclodextrin derivatives as detoxifying agents of chemical warfare agents(I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay, Toxicol. Lett., 216, 200-205 (2013). https://doi.org/10.1016/j.toxlet.2012.11.020
  25. A. Saxena, A. Sharma, B. Singh, M. V. S. Suryanarayana, T. H. Mahato, M. Sharma, R. P. Semwal, A. K. Gupta and K. Sekhar, Kinetics of in-situ degradation of nerve agent simulants and sarin on carbon with and without impregnants, Carbon Sci., 6, 158-165 (2005).
  26. T. Wagner-Jauregg, B. E. Hackley Jr., T. A. Lies, O. O. Owens, and R. Proper, Model reactions of phosphorus-containing enzyme inactivators. IV. The catalytic activity of certain metal salts and chelates in the hydrolysis of diisopropyl fluorophosphate, J. Am. Chem. Soc., 77, 922-929 (1955). https://doi.org/10.1021/ja01609a037
  27. R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963). https://doi.org/10.1021/ja00888a027
  28. R. L. Gustafson and A. E. Martell, A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (sarin), J. Am. Chem. Soc., 84, 2309-2316 (1962). https://doi.org/10.1021/ja00871a007
  29. Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
  30. Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. Korean Inst. Mil. Sci. Technol., 15, 699-704 (2012). https://doi.org/10.9766/KIMST.2012.15.5.699
  31. G. W. Wagner and P. W. Bartram, Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY, Langmuir, 15, 8113-8118 (1999). https://doi.org/10.1021/la990716b
  32. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize MgO, J. Phys. Chem. B, 103, 3225-3228 (1999). https://doi.org/10.1021/jp984689u
  33. G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104, 5118-5123 (2000). https://doi.org/10.1021/jp000101j
  34. G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, Reactions of VX, GB, GD, and HD with nanosize $Al_2O_3$. formation of aluminophosphonates, J. Am. Chem. Soc., 123, 1636-1644 (2001). https://doi.org/10.1021/ja003518b
  35. G. W. Wagner, L. R. Procell, and S. Munavalli, $^{27}Al$, $^{47,49}Ti$, $^{31}P$, and $^{13}C$ MAS NMR study of VX, GD, and HD reactions with nanosize $Al_2O_3$, conventional $Al_2O_3$ and $TiO_2$, and aluminum and titanium metal, J. Phys. Chem. C., 111, 17564-17569 (2007). https://doi.org/10.1021/jp074511k
  36. G. W. Wagner, Q. Che and Y. Wu, Reactions of VX, GD, and HD with nanotubular titania, J. Phys. Chem. C., 112, 11901-11906 (2008). https://doi.org/10.1021/jp803003k
  37. T. J. Bandosz, M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, and G. W. Wagner, Reactions of VX, GD, and HD with $Zr(OH)_4$: Near instantaneous decontamination of VX, J. Phys. Chem. C., 116, 11606-11614 (2012). https://doi.org/10.1021/jp3028879
  38. K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018). https://doi.org/10.1002/aoc.4383
  39. J. K. Yang, S. I. Chang, S. G. Ryu, and Y. S. Yang, Catalytic effects of Cu(II)-TMED and Cu(II)-BIPY on the hydrolysis of p-nitrophenol diphenyl phosphate, Bull. Korean Chem. Soc., 15, 261-263 (1994).
  40. S. J. Oh, C. W. Yoon, and J. W. Park, Catalytic hydrolysis of phosphate triesters by lanthanide(III) cryptate (2.2.1) complexes, J. Chem. Soc. Perkin Trans. 2, 3, 329-331 (1996).
  41. W. Y. Chung and Y. S. Kye, A study on the hydrolysis of sarin and soman by merrifield-type diaminatedpolystyrene-Cu(II) heterogeneous polymers, J. Korean Inst. Mil. Sci. Technol., 3, 164-175 (2000).
  42. G. W. Wagner, G. W. Peterson, and J. J. Mahle, Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: The development of self-decontaminating paints, Ind. Eng. Chem. Res., 51, 3598-3603 (2012). https://doi.org/10.1021/ie202063p
  43. O. M .Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995). https://doi.org/10.1038/378703a0
  44. N. L. Rosi, M. Eddaoudi, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Advances in the chemistry of metal-organic frameworks, Cryst. Eng. Comm., 4, 401-404 (2002). https://doi.org/10.1039/B203193K
  45. M. H. Yap, K. L. Fow, and G. Z. Chen, Synthesis and applications of MOF-derived porous nanostructures, Green Energy Environ., 2, 218-245 (2017). https://doi.org/10.1016/j.gee.2017.05.003
  46. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th ed., 140-141, 194-195, Elsevier, Netherlands (2007).
  47. J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization, J. Catal., 360, 160-167 (2018). https://doi.org/10.1016/j.jcat.2017.12.007
  48. I. Suzuki, S. Oki, and S. Namba, Determination of external surface areas of zeolites, J. Catal., 100, 219-227 (1986). https://doi.org/10.1016/0021-9517(86)90087-4
  49. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?, J. Am. Chem. Soc., 134, 15016-15021 (2012). https://doi.org/10.1021/ja3055639
  50. H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem., 50, 9147-9152 (2011). https://doi.org/10.1021/ic201376t
  51. H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, and O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018-1023 (2012). https://doi.org/10.1126/science.1220131
  52. M. Eddaoudi, J. H. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002). https://doi.org/10.1126/science.1067208
  53. M. P. Suh, H. J. Park, T. K. Prasad, and D. W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835 (2012). https://doi.org/10.1021/cr200274s
  54. H. W. Langmi, J. Ren, B. North, M. Mathe, and D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review, Electrochim. Acta, 128, 368-392 (2014). https://doi.org/10.1016/j.electacta.2013.10.190
  55. Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges, J. Am. Chem. Soc., 135, 11887-11894 (2013). https://doi.org/10.1021/ja4045289
  56. Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49, 483-493 (2016). https://doi.org/10.1021/acs.accounts.5b00530
  57. H. Furukawa, K. E. Cordova, M. O'Keee, and O. M. Yaghi, The chemistry and applications of metalorganic frameworks, Science, 341, 974-990 (2013).
  58. I. Matito-Martos, P. Z. Moghadam, A. Li, V. Colombo, J. A. R. Navarro, S. Calero, and D. Fairen-Jimenez, Discovery of an optimal porous crystalline material for the capture of chemical warfare agents, Chem. Mater., 30, 4571-4579 (2018). https://doi.org/10.1021/acs.chemmater.8b00843
  59. C. Montoro, F. Linares, E. Q. Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, and J. A. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks, J. Am. Chem. Soc., 133, 11888-11891 (2011). https://doi.org/10.1021/ja2042113
  60. N. M. Padial, E. Q. Procopio, C. Montoro, E. Lopez, J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barea, and J. A. Navarro, Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. Int. Ed., 52, 8290-8294 (2013). https://doi.org/10.1002/anie.201303484
  61. Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang, Metal-organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362, 1-23 (2018). https://doi.org/10.1016/j.ccr.2018.02.008
  62. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459 (2009). https://doi.org/10.1039/b807080f
  63. J. B. Decoste and G. W. Peterson, Metal organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014). https://doi.org/10.1021/cr4006473
  64. M. S. Lee, S. J. Garibay, A. M. Ploskonka, and J. B. DeCoste, Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents, MRS Commun., 9, 464-473 (2019). https://doi.org/10.1557/mrc.2019.22
  65. Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017). https://doi.org/10.1016/j.ccr.2016.11.008
  66. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed., 45, 5974-5978 (2006). https://doi.org/10.1002/anie.200601878
  67. N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357-3385 (2017). https://doi.org/10.1039/C7CS00108H
  68. R. S. Vemuri, P. D. Armatis, J. R. Bontha, B. P. McGrail, and R. K. Motkuri, An overview of detection and neutralization of chemical warfare agents using metal organic frameworks, J. Bioterror. Biodef., 6: 137 (2015)
  69. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater., 1, 15018-15032 (2016). https://doi.org/10.1038/natrevmats.2015.18
  70. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  71. R. Zou, R. Zhong, S. Han, H. Xu, A. K. Burrell, N. Henson, J. L. Cape, D. D. Hickmott, T. V. Timofeeva, T. E. Larson, and Y. Zhao, A porous metal-organic replica of ${\alpha}-PbO_2$ for capture of nerve agent surrogate, J. Am. Chem. Soc., 132, 17996-17999 (2010). https://doi.org/10.1021/ja101440z
  72. S. Sabale, J. Zheng, R. S. Vemuri, X. Y. Yu, B. P. McGrail, and R. K. Motkuri, Recent advances in metal-organic frameworks for heterogeneous catalyzed organic transformations, Synth. Catal., 1, 1-8 (2016).
  73. G. W. Peterson and G. W. Wagner, Detoxification of chemical warfare agents by CuBTC, J. Porous Mater., 21, 121-126 (2014). https://doi.org/10.1007/s10934-013-9755-6
  74. S. Wang, L. Bromberg, H. Schreuder-Gibson, and T. A. Hatton, Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines, ACS Appl. Mater. Interfaces, 5, 1269-1278 (2013). https://doi.org/10.1021/am302359b
  75. Y. Liu. S. Y. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS. Nano, 9, 12358-12364 (2015). https://doi.org/10.1021/acsnano.5b05660
  76. Y. Liu, A. J. Howarth, J. T. Hupp, and O. K. Farha, Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework, Angew. Chem. Int. Ed., 54, 9001-9005 (2015). https://doi.org/10.1002/anie.201503741
  77. P. Li, R. C. Klet, S. Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H. J. Park, S. S. Al-Juaid, J. T. Hupp, and O. K. Farha, Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulants, Chem. Commun., 51, 10925-10928 (2015). https://doi.org/10.1039/C5CC03398E
  78. J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015). https://doi.org/10.1038/nmat4238
  79. R. J. Drout, L. Robison, Z. Chen, T. Islamoglu, and O. K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem., 1, 304-317 (2019). https://doi.org/10.1016/j.trechm.2019.03.010
  80. S. Y. Moon, Y. Liu, T. T. Hupp, and O. K. Farha, Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework, Angew. Chem., Int. Ed., 54, 6795-6799 (2015). https://doi.org/10.1002/anie.201502155
  81. M. J. Katz, S. Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp, and O. K. Farha, Exploiting parameter space in MOFs: A 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-$NH_2$, Chem. Sci., 6, 2286-2291 (2015). https://doi.org/10.1039/C4SC03613A
  82. J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, and G. N. Parsons, Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs, Angew. Chem. Int. Ed., 55, 13224-13228 (2016). https://doi.org/10.1002/anie.201606656
  83. S. Y. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, G. J. B. DeCoste, J. T. Hupp, and O. K. Farha, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using $Zr_6$-based metal-organic frameworks, Inorg. Chem., 54, 10829-10833 (2015). https://doi.org/10.1021/acs.inorgchem.5b01813
  84. M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-$NH_2$, MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017). https://doi.org/10.1021/acs.inorgchem.7b01809
  85. T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017). https://doi.org/10.1021/acs.chemmater.6b04835
  86. H. Shigekawa, M. Ishida, K. Miyake, R. Shioda, Y. Iijima, T. Imai, H. Takahashi, J. Sumaoka, and M. Komiyama, Extended X-ray absorption fine structure study on the cerium(IV)-induced DNA hydrolysis: Implication to the roles of 4f orbitals in the catalysis, Appl. Phys. Lett., 74, 460-462 (1999). https://doi.org/10.1063/1.123036
  87. M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha, and J. T. Hupp, Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants, Angew. Chem. Int. Ed., 53, 497-501 (2013); Angew. Chem., 126, 507-511 (2014).
  88. R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, and S. T. Nguyen, Enhanced catalytic activity through the tuning of micropore environment and supercritical $CO_2$ processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant, J. Am, Chem. Soc., 135, 11720-11723 (2013). https://doi.org/10.1021/ja405495u
  89. A. Pankajakshan, M. Sinha, A. A. Ohja, and S. Mandal, Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media, ACS Omega, 3, 7832-7839 (2018). https://doi.org/10.1021/acsomega.8b00921
  90. Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Z. Li, Y. Suo, T. Li, and J. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent, J. Mater. Chem. A, 6, 2184-2192 (2018). https://doi.org/10.1039/C7TA08399H
  91. S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a Zr6-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016). https://doi.org/10.1002/chem.201603976
  92. M. K. Kim, S. H. Kim, M. G. Park, S. G. Ryu, and H. S. Jung, Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-$NH_2$, RSC Adv., 8, 41633-41638 (2018). https://doi.org/10.1039/C8RA06805D
  93. E. Lopez-Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Perez, J. L. Cenis, E. Barea, and J. A. R. Navarro, Textile metal-organic framework composites as self-detoxifying filters for chemical warfare agents, Angew. Chem. Int. Ed., 54, 6790-6794 (2015). https://doi.org/10.1002/anie.201502094
  94. R. Gil-San-Millan, E. Lopez-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodriguez-Albelo, J. E. Oltra, E. Barea, and J A. R. Navarro, Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites, ACS Appl. Mater. Interfaces, 9, 23967-23973 (2017). https://doi.org/10.1021/acsami.7b06341