DOI QR코드

DOI QR Code

Complete genome sequence of Celluosilyticum lentocellum WCF-2 isolated from cow dung

소 분변에서 분리된 Celluosilyticum lentocellum WCF-2의 유전체 염기서열 분석

  • Heo, Jun (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • You, Jaehong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, InCheol (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Han, Byeong-Hak (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kwon, Soon-Wo (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 허준 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 유재홍 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 박인철 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 한병학 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 권순우 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2019.09.09
  • Accepted : 2019.09.18
  • Published : 2019.09.30

Abstract

An anaerobic bacterial strain WCF-2 was isolated from cow dung in finding cellulose-degrading bacteria for use as silage additives. Strain WCF-2 showed a higher cellulolytic activity than Cellulosilyticum lentocellum DSM $5427^T$, the closest relative of strain WCF-2 (98.2% of 16S rRNA gene sequence similarity). We sequenced the complete genome of strain WCF-2 and compared it with that of C. lentocellum DSM $5427^T$. The OrthoANI value between the two strains was 97.9% thus strain WCF-2 was identified as C. lentocellum. The genome size of strain WCF-2 was 4,779,774 bp with a G + C content of 34.4%, 4,154 coding genes (CDS), 54 pseudo genes, and 142 RNA genes. Strain WCF-2 harbored seven cellulase genes, five of which showed low similarities with those of C. lentocellum DSM $5427^T$.

Keywords

Cellulosilyticum lentocellum;cellulolytic activity;genome sequence

Acknowledgement

Supported by : National Institute of Agricultural Sciences

References

  1. Cai, S and Dong X. 2010. Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Int. J. Syst. Evol. Microbiol. 60, 845-849. https://doi.org/10.1099/ijs.0.014712-0
  2. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461-466. https://doi.org/10.1099/ijsem.0.002516
  3. Guevarra, RB, Kim J, Nguyen SG, and Unno T. 2015. Comparison of fecal microbial communities between white and black pigs. J. Appl. Biol. Chem. 58, 369-375. https://doi.org/10.3839/jabc.2015.058
  4. Koren, S, Walenz BP, Berlin K, Miller JR, Bergman NH, and Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722-736. https://doi.org/10.1101/gr.215087.116
  5. Lee I, Kim YO, Park SC, and Chun J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  6. Meehan CJ and Beiko RG. 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated Bacteria. Genome Biol. Evol. 6, 703-713. https://doi.org/10.1093/gbe/evu050
  7. Murray WD, Hofmann L, Campbell NL, and Madden RH. 1986. Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Syst. Appl. Microbiol. 8, 181-184. https://doi.org/10.1016/S0723-2020(86)80074-1
  8. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624. https://doi.org/10.1093/nar/gkw569
  9. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, and Earl AM. 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. https://doi.org/10.1371/journal.pone.0112963
  10. Yoon SH, Ha SM, Lim J, Kwon S, and Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281-1286. https://doi.org/10.1007/s10482-017-0844-4