Complete genome sequence of Comamonas sp. NLF-7-7 isolated from biofilter of wastewater treatment plant

폐수처리장의 바이오 필터로부터 분리된 Comamonas sp. NLF-7-7 균주의 유전체 염기서열 해독

  • Received : 2019.08.27
  • Accepted : 2019.09.17
  • Published : 2019.09.30


Comamonas sp. NLF-7-7 was isolated from biofilter of wastewater treatment plant. The whole-genome sequence of Comamonas sp. NLF-7-7 was analyzed using the PacBio RS II and Illumina HiSeqXten platform. The genome comprises a 3,333,437 bp chromosome with a G + C content of 68.04%, 3,197 total genes, 9 rRNA genes, and 49 tRNA genes. This genome contained pollutants degradation and floc forming genes such as sulfur oxidization pathway (SoxY, SoxZ, SoxA, and SoxB) and floc forming pathway (EpsG, EpsE, EpsF, EpsG, EpsL, and glycosyltransferase), respectively. The Comamonas sp. NLF-7-7 can be used to the purification of wastewater.


Comamonas sp. NLF-7-7;Illumina HiSeqXten;PacBio RS II;wastewater


  1. Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ, and Sa TM. 2008. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res. Microbiol. 159, 579-589.
  2. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, and Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
  3. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569.
  4. De Vos P, Kersters K, Falsen E, Pot B, Gillis M, Segers P, and De Ley J. 1985. Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35, 443-453.
  5. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286-293.
  6. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240.
  7. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA. 2009. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639-1645.
  8. Petri R, Podgorsek L, and Imhoff JF. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 197, 171-178.
  9. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069.
  10. Stingele F, Newell JW, and Neeser JR. 1999. Unraveling the function of glycosyltransferases in Streptococcus thermophilus Sfi6. J. Bacteriol. 181, 6354-6360.
  11. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963.
  12. Wani A, Branion R, and Lau AK. 1997. Biofiltration: A promising and cost-effective control technology for Odors, VOCs and air toxics. J. Ferment. Technol. 64, 161-167.


Supported by : Korea Ministry of SMEs and Startups