Complete genome sequence of Bacillus halotolerans F41-3 isolated from wild flower in Korea

야생화로부터 분리한 Bacillus halotolerans F41-3 균주의 전체 게놈서열

  • Heo, Jun (Agricultural Microbiology Division, National Institute of Agricultural Sciences) ;
  • Kim, Soo-Jin (Agricultural Microbiology Division, National Institute of Agricultural Sciences) ;
  • Kim, Jeong-Seon (Agricultural Microbiology Division, National Institute of Agricultural Sciences) ;
  • Hong, Seung-Beom (Agricultural Microbiology Division, National Institute of Agricultural Sciences) ;
  • Kwon, Soon-Wo (Agricultural Microbiology Division, National Institute of Agricultural Sciences)
  • 허준 (국립농업과학원 농업미생물과) ;
  • 김수진 (국립농업과학원 농업미생물과) ;
  • 김정선 (국립농업과학원 농업미생물과) ;
  • 홍승범 (국립농업과학원 농업미생물과) ;
  • 권순우 (국립농업과학원 농업미생물과)
  • Received : 2019.09.09
  • Accepted : 2019.09.16
  • Published : 2019.09.30


A number of Bacillus strains are known to have antimicrobial activity useful in various fields. In order to prevent Propionibacterium acnes, which is one of the factors of acne, we selected Bacillus halotolerans F41-3 which have high antimicrobial activities against P. acnes. We conducted complete genome sequencing of B. halotolerans F41-3 and analyzed genomic characteristics. This genome size is 4,144,458 bp with a G + C content of 43.76%, 4,145 total genes and 3,686 protein coding genes. Among the genes, we found that gene clulster of subtilosin, a kind of bacteriocin, synthesis and gene cluster of nickel transportation. Both of them may influence inhibition of P. acnes.


Bacillus halotolerans;genome sequence;inhibition of Propionibacterium acnes;subtilosin


Supported by : National Institute of Agricultural Sciences


  1. Babasaki K, Takao T, Shimonishi Y, and Kurahashi K. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem. 98, 585-603.
  2. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat. Methods 10, 563-569.
  3. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, Meyer SD, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461-466.
  4. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, and Vederas JC. 2004. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to ${\alpha}$-carbon cross-links: Formation and reduction of ${\alpha}$-thio-${\alpha}$-amino acid derivatives. J. Biochem. 98, 585-603.
  5. Lee DS and Song HG. 2018. Antibacterial activity of isolated bacteria against Propionibacterium acnes causing acne vulgaris. Korean J. Microbiol. 54, 272-279.
  6. Sumi CD, Yang BW, Yeo IC, and Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 61, 93-103.
  7. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624.
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017, Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617.