DOI QR코드

DOI QR Code

Quantitative Analysis of Snow Particles Using a Multi-Angle Snowflake Camera in the Yeongdong Region

영동지역에서 눈결정 카메라를 활용한 눈결정의 정량 분석

  • Kim, Su-Hyun (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Ko, Dae-Hong (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Seong, Dae-Kyung (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Eun, Seung-Hee (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Baek-Jo (High Impact Weather Research Center, National Institute of Meteorological Sciences) ;
  • Park, Chang-Geun (High Impact Weather Research Center, National Institute of Meteorological Sciences) ;
  • Cha, Ju-Wan (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • 김수현 (강릉원주대학교 대기환경과학과) ;
  • 고대홍 (강릉원주대학교 대기환경과학과) ;
  • 성대경 (국립환경과학원 기후대기연구부) ;
  • 은승희 (강릉원주대학교 대기환경과학과) ;
  • 김병곤 (강릉원주대학교 대기환경과학과) ;
  • 김백조 (국립기상과학원 재해기상연구센터) ;
  • 박창근 (국립기상과학원 재해기상연구센터) ;
  • 차주완 (국립기상과학원 응용기상연구과)
  • Received : 2019.06.10
  • Accepted : 2019.09.08
  • Published : 2019.09.30

Abstract

We employed a Multi-Angle Snowflake Camera (MASC) to quantitatively analyze snow particles at the ground level in the Yeongdong region of Korea. The MASC captures high-resolution photographs of hydrometeors from three angles and simultaneously measures fallspeed. Based on snowflake images of the several episodes in 2017 and 2018, we derived statistics of size, aspect ratio, orientation, complexity, and fallspeed of snow crystals, which generally showed similar characteristics to the previous studies in other regions of the world. Dominant snow crystal habits of January 22, 2018 generated by northerly were melted aggregates when 850 hPa temperature was about $-6{\sim}-8^{\circ}C$. Average fallspeed of snow crystals was $1.0m\;s^{-1}$ though its size gradually increased as temperature decreased. Another snowfall event (March 8, 2018) was driven by the baroclinic instability as accompanied with a deep trough. Snow crystal habits were largely rimed aggregates (complexity ~1.8) and melting particles of dark images. Meanwhile, in the extreme snowfall event whose snow rate was greater than $10cm\;hr^{-1}$ on January 20, 2017, main snow crystals appeared to be heavily rimed particles with relatively smaller size when convective clouds developed vertically up to 9 km in association with tropopause folding. MASC also could successfully measure a decrease in snow crystal size and an increase in riming degree after AgI seeding at Daegwallyeong on March 14, 2017.

Keywords

Snow crystals;snowflake camera;riming;aggregate;ESSAY

Acknowledgement

Grant : 산악지역 강설 메커니즘 분석 및 예측성 향상 연구, 인공강우 수치 모델링 기술개발연구

Supported by : 연구재단, 재해기상연구센터

References

  1. Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888-2899. https://doi.org/10.1175/2009JAS2883.1
  2. Besic, N., J. Figueras i Ventura, J. Grazioli, M. Gabella, U. Germann, and A. Berne, 2016: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach. Atmos. Meas. Tech., 9, 4425-4445, doi:10.5194/amt-9-4425-2016. https://doi.org/10.5194/amt-9-4425-2016
  3. Chandrasekar, V., R. Keranen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97-111, doi:10.1016/j.atmosres.2011.08.014. https://doi.org/10.1016/j.atmosres.2011.08.014
  4. Garrett, T. J., and S. E. Yutter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 6515-6522, doi:10.1002/2014GL061016. https://doi.org/10.1002/2014GL061016
  5. Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multiangle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 2625-2633, doi:10.5194/amt-5-2625-201. https://doi.org/10.5194/amt-5-2625-201
  6. Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13787-13802, doi:10.5194/acp-15-13787-2015. https://doi.org/10.5194/acp-15-13787-2015
  7. Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 3-29. https://doi.org/10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2
  8. Kim, H.-M., S.-P. Jung, S.-R. In, and B.-C. Choi, 2018a: A case study of heavy snowfall with thunder and lighting in Youngdong area. Atmosphere, 28, 187-200 (in Korean with English abstract).
  9. Kim, Y.-J., B.-G. Kim, J.-K. Shim, and B.-C. Choi, 2018b: Observation and numerical simulation of cold clouds and snow particles in the Yeongdong region. Asia-Pac. J. Atmos. Sci., 54, 499-510, doi:10.1007/s13143-018-0055-6. https://doi.org/10.1007/s13143-018-0055-6
  10. Lee, J.-E., S.-H. Jung, H.-M. Park, S. Kwon, P.-L. Lin, and G. W. Lee, 2015: Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements. Adv. Atmos. Sci., 32, 1277-1290, doi:10.1007/s00376-015-4234-4. https://doi.org/10.1007/s00376-015-4234-4
  11. Lin, Y., L. J. Donner, and B. A. Colle, 2011: Parameterization of riming intensity and its impact on ice fall speed using arm data. Mon. Weather Rev., 139, 1036-1047, doi:10.1175/2010MWR3299.1. https://doi.org/10.1175/2010MWR3299.1
  12. Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185-2197. https://doi.org/10.1029/JC079i015p02185
  13. Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystal. J. Fac. Sci., Hokkaido Univ., 2, 321-335.
  14. Moss, S. J., and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model para metrisations of ice to water ratios in clouds. Atmos. Res., 34, 1-25. https://doi.org/10.1016/0169-8095(94)90078-7
  15. Nakaya, U., I. Sato, and Y. Sekido, 1938: Preliminary Experiments on the artificial Production of Snow Crystals. J. Fac. Sci., Hokkaido Univ., 2, 1-11.
  16. Nam, H.-G., B.-G. Kim, S.-O. Han, C. Lee, and S.-S. Lee, 2014: Characteristics of easterly-induced snowfall in Yeongdong and its relationship to air-sea temperature difference. Asia-Pac. J. Atmos. Sci., 50, 541-552, doi: 10.1007/s13143-014-0044-3. https://doi.org/10.1007/s13143-014-0044-3
  17. Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow arctic mixed-phase clouds. J. Appl. Meteorol., 55, 403-424, doi:10.1175/JAMC-D-15-0168.1. https://doi.org/10.1175/JAMC-D-15-0168.1
  18. Praz, C., Y.-A. Roulet, and A. Berne. 2017: Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera. Atmos. Meas. Tech., 10, 1335-1357, doi:10.5194/amt-10-1335-2017. https://doi.org/10.5194/amt-10-1335-2017
  19. Seo, W.-S., S.-H. Eun, B.-G. Kim, A.-R. Ko, D.-K. Seong, G.-M. Lee, H.-R. Jeon, S.-O. Han, and Y. S. Park, 2015: Study on characteristics of snowfall and snow crystal habits in the ESSAY (experiment on snow storms at Yeongdong) Campaign in 2014. Atmosphere, 25, 261-270 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.261