The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

  • Mustopa, Apon Zaenal (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Wijaya, Sri Kartika (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Ningrum, Ratih Asmana (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Agustiyanti, Dian Fitria (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Triratna, Lita (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Alfisyahrin, Wida Nurul (Research Centre for Biotechnology, Indonesian Institute of Science (LIPI))
  • Received : 2018.06.22
  • Accepted : 2019.02.12
  • Published : 2019.09.28


Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10-20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.


Lactococcus lactis;HBcAg gene;codon optimisation;protein purification;western blotting;dot blot hybridization


  1. World Health Organization. Factsheet No. 204; October 2000. Accessed on May 2018. Available from:
  2. Thedja MD, Muljono DH, Nurainy N, Sukowati CHC, Verhoef J, Marzuki S. 2011. Ethnogeographical structure of hepatitis B virus genotype distribution in Indonesia and discovery of a new subgenotype, B9. Arch. Virol. 156: 855-868.
  3. Nurainy N, Muljono DH, Sudoyo H, Marzuki S. 2008. Genetic study of hepatitis B virus in Indonesia reveals a new subgenotype of genotype B in Nusa Tenggara. Arch. Virol. 153: 1057-1065.
  4. Utama A, Theresia IO, Rama D, Upik AM, Irwan Y, Susan T. 2009. Hepatitis B virus genotypes/subgenotypes in voluntary blood donors in Makassar, South Sulawesi, Indonesia. Virol. J. 6: 128.
  5. Utama A, Sigit P, Marlinang DS, Rama D, Rino AG, Irsan H, et al. 2009. Hepatitis B virus subgenotypes and basal core promoter mutations in Indonesia. World J. Gastroenterol. 15: 4028-4036.
  6. Don Ganem MD, Prince AM. 2004. Hepatitis B virus infection - natural history and clinical consequences. N. Engl. J. Med. 350: 1118-1129.
  7. Loggi E, Vitale G, Conti F, Bernardi M, Andreone P. 2015. Chronic hepatitis B: Are we close to a cure?. Dig. Liver Dis. 47: 836-841.
  8. Akbar SMF, Chen S, Al-Mahtab M, Abe M, Hiasa Y, Onji M. 2012. Strong and multi-antigen specific immunity by hepatitis B core antigen HBcAg-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus. Antiviral Res. 96: 59-64.
  9. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. 2000. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191: 1269-1280.
  10. Cui GY, Diao HY. 2010. Recognition of HBV antigens and HBV DNA by dendritic cells. Hepatobiliary Pancreat. Dis. Int. 9: 584-592.
  11. Choi Y, Park SG, Yoo J, Jung G. 2005. Calcium ions affect the hepatitis B virus core assembly. Virology 3321: 454-463.
  12. Pyrski M, Rugowska A, Wierzbiński KR, Kasprzyk A, Bogusiewicz M, Bociag P, et al. 2017. HBcAg produced in transgenic tobacco triggers Th1 and Th2 response when intramuscularly delivered. Vaccine 3542: 5714-5721.
  13. Chen H, Liu SP, Chen L, Huang JH, Xiang SM. 2005. Expression of HBcAg mutant with long internal deletion in Saccharomyces cerevisiae and observation of its self-assembly particles by atomic force microscopy AFM. Int. J. Biol. Macromol. 375: 239-248.
  14. de Vos WM. 1999. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 23: 289-295.
  15. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, et al. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 113: E6117-E6125.
  16. Quax TE, Claassens NJ, Soll D, van der Oost J. 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell. 592: 149-161.
  17. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. pp. 1116-1118. 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  18. Wright F, Bibb MJ. 1992. Codon usage in the G+C-rich Streptomyces genome. Gene 113: 55-65.
  19. Ohkubo S, Muto A, Kawauchi Y, Yamao F, Osawa S. 1987. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol. Gen. Genet. 210: 314-322.
  20. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 115: 731-753.
  21. Desvaux M, Hebraud M, Talon R, Henderson IR. 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17: 139-145.
  22. de Ruyter PG, Kuipers OP, de Vos WM. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 6210: 3662-3667.
  23. Mustopa AZ, Murtiyaningsih H, Fatimah, Suharsono. 2016. Cloning and heterologous expression of extracellular plantaricin F produced by Lactobacillus plantarum S34 isolated from "Bekasam" in Lactococcus lactis. Microbiol. Indones. 10: 95-106.
  24. Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. 2018. Construction, heterologous expression, partial purification, and in vitro cytotoxixity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol. Biol. Rep. 45: 1235-1244.
  25. Blatny JM, Ertesvag H, Nes IF, Valla S. 2003. Heterologous gene expression in Lactococcus lactis; expression of the Azotobacter vinelandii algE6 gene product displaying mannuronan C-5 epimerase activity. FEMS Microbiol. Lett. 2272: 229-235.
  26. Frelet-Barrand A, Boutigny S, Moyet L, Deniaud A, Seigneurin-Berny D, Salvi D, et al. 2010. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS One 51: e8746.
  27. Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, et al. 2002. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl. Environ. Microbiol. 68: 917-922.
  28. Brurberg MB, Haandrikman AJ, Leenhouts KJ, Venema G, Nes IF. 1994. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 421: 108-115.
  29. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, et al. 2005. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 2.