DOI QR코드

DOI QR Code

Comparative Analysis of the Difference in the Midgut Microbiota between the Laboratory Reared and the Field-caught Populations of Spodoptera litura

  • Pandey, Neeti (Departmnet of Zoology, University of Delhi) ;
  • Rajagopal, Raman (Departmnet of Zoology, University of Delhi)
  • Received : 2018.12.25
  • Accepted : 2019.04.29
  • Published : 2019.09.28

Abstract

Midgut microbiota is known to play a fundamental role in the biology and physiology of the agricultural pest, Spodoptera litura. This study reports the difference in the larval midgut microbiota of field-caught and laboratory-reared populations of S. litura by performing 16S rDNA amplicon pyrosequencing. Field populations for the study were collected from castor crops, whereas laboratory-reared larvae were fed on a regular chickpea based diet. In total, 23 bacterial phylotypes were observed from both laboratory-reared and field-caught caterpillars. Fisher's exact test with Storey's FDR multiple test correction demonstrated that bacterial genus, Clostridium was significantly abundant (p < 0.05) in field-caught larvae of S. litura as compared to that in the laboratory-reared larvae. Similarly, bacterial genera, such as Bradyrhizobium, Burkholderia, and Fibrisoma were identified (p < 0.05) predominantly in the laboratory-reared population. The Bray-Curtis dissimilarity matrix depicted a value of 0.986, which exhibited the maximum deviation between the midgut microbiota of the laboratory-reared and field-caught populations. No significant yeast diversity was seen in the laboratory-reared caterpillars. However, two yeast strains, namely Candida rugosa and Cyberlindnera fabianii were identified by PCR amplification and molecular cloning of the internal transcribed space region in the field-caught caterpillars. These results emphasize the differential colonization of gut residents based on environmental factors and diet.

Keywords

Spodoptera litura;midgut microbiota;castor leaves;16S rDNA pyrosequencing;internal transcribed space

References

  1. Feakin SD. 1973. Pest control in groundnuts. PNAS USA, Manual No. 2, London, UK: ODA.
  2. Kranz J, Schumutterer H, Koch W. 1977. Diseases Pests and Weeds in Tropical Crops. Berlin and Hamburg, Germany: Verlag Paul Parley.
  3. Brown ES, Dewhurst CF. 1975. The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bull. Entomol. Res. 65: 221-262. https://doi.org/10.1017/S0007485300005939
  4. Holloway JD. 1989. The moths of Borneo: family Noctuidae, trifine subfamilies: Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphipyrinae, Agaristinae. Malayan Nature J. 42: 57-228.
  5. Moussa MA, Zaher MA, Kotby F. 1960. Abundance of the cotton leaf worm, Prodenia litura (F.) in relation to host plants. I. Host plants and their effect on biology (Lepidoptera:Agrotidae). Bull. Soc. Entomol. Egypti. 44: 241-251.
  6. Ramakrishnan N, Saxena VS, Dhingra S. 1984. Insecticide-resistance in the population of Spodoptera litura (F.) in Andhra Pradesh. Pesticides 18: 23-27.
  7. Patel HK, Patel NG, Patel VC. 1971. Quantitative estimation of damage to tobacco caused by the leaf-eating caterpillar, Prodenia litura. F. Proc. Natl. Acad. Sci. USA 17: 202-205.
  8. Broderick NA, Raffa KF, Handelsman J. 2006. Midgut bacteria required for Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  9. Moss M. 2002. Bacterial pigments. Microbiology 3: 10-12.
  10. Behar A, Yuval B, Jurkevitch E. 2005. Enterobacteria mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol. Ecol. 14: 2637-2643. https://doi.org/10.1111/j.1365-294X.2005.02615.x
  11. Dillon RJ, Charnley AK. 1995. Chemical barriers to gut infection in the desert locust-in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J. Invertebr. Pathol. 66: 72-75. https://doi.org/10.1006/jipa.1995.1063
  12. Xue X, Li SJ, Muhammad Z, Ahmed PJ, Barro D, Ren SX, et al. 2012. Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS One 7: e48148. https://doi.org/10.1371/journal.pone.0048148
  13. Aksoy S. 2000. Tsetse - A haven for microorganisms. Parasitol. Today 16: 114-118. https://doi.org/10.1016/S0169-4758(99)01606-3
  14. Montllor CB, Maxmen A, Purcell AH. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27: 189-195. https://doi.org/10.1046/j.1365-2311.2002.00393.x
  15. Oliver KM, Russell JA, Moran NA, Hunter MS. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 100: 1803-1807. https://doi.org/10.1073/pnas.0335320100
  16. Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R. 2012. Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera. PLoS One 7: e30768. https://doi.org/10.1371/journal.pone.0030768
  17. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. 2009. Bacterial diversity analysis of larvae and adult midgut micro-flora using culture-dependent and culture independent methods in lab-reared and field-collected Anopheles stephensi- an Asian malarial vector. BMC Microbiol. 9: 96. https://doi.org/10.1186/1471-2180-9-96
  18. Vaughan EE, Schut F, Heilig HG, Zoetendal EG, de Vos WM, Akkermans AD. 2000. A molecular view of the intestinal ecosystem. Curr. Issues in Intest. Microbiol. 1: 1-12.
  19. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 54-63. https://doi.org/10.1073/pnas.74.1.54
  20. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638. https://doi.org/10.1126/science.1110591
  21. Pandey N, Singh A, Rana VS, Rajagopal R. 2013. Molecular characterization and analysis of bacterial diversity in Aleurocanthus woglumi (Hemiptera: Aleyrodidae). Environ. Entomol. 42: 1257-1264. https://doi.org/10.1603/EN13110
  22. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 8: 125. https://doi.org/10.1186/1471-2180-8-125
  23. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. 2010. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA 107: 18933. https://doi.org/10.1073/pnas.1007028107
  24. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. 2008. Evolution of mammals and their gut microbes. Science 320: 1647-1651. https://doi.org/10.1126/science.1155725
  25. Pandey N, Rajagopal R. 2015. Molecular characterization and diversity analysis of bacterial communities associated with Dialeurolonga malleswaramensis (Hemiptera:Aleyrodidae) adults using 16S rDNA amplicon pyrosequencing and FISH. Insect Sci. 23: 704-711.
  26. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc. Natl. Acad. Sci. U S A 103: 12115-12120. https://doi.org/10.1073/pnas.0605127103
  27. Montoya-Porras LM, Omar TC, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 2017. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta. Trop. 178: 327-332.
  28. Strand MR. 2018. Composition and functional roles of the gut microbiota in mosquitoes. Curr. Opin. Insect Sci. 28: 59-65. https://doi.org/10.1016/j.cois.2018.05.008
  29. Pearson WR, Wood T, Zhang Z, Miller W. 1997. Comparison of DNA sequences with protein sequences. Genomic 46: 24-36. https://doi.org/10.1006/geno.1997.4995
  30. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE. 2010. Black box chimera check (B2C2): Windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol. J. 4: 47-52. https://doi.org/10.2174/1874285801004010047
  31. Edgar RC. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10: 996-998. https://doi.org/10.1038/nmeth.2604
  32. Morgan MJ, Chariton AA, Hartley DM, Court LN, Hardy CM. 2013. Improved inference of taxonomic richness from environmental DNA. PLoS One 8: e71974. https://doi.org/10.1371/journal.pone.0071974
  33. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  34. Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11: R25. https://doi.org/10.1186/gb-2010-11-3-r25
  35. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. https://doi.org/10.1186/s13059-014-0550-8
  36. Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleeontol. Electron. 4: 9.
  37. Messner R, Prillinger H, Ibl M, Himmler G. 1995. Sequences of ribosomal genes and internal transcribed spacers move three plant parasitic fungi, Eremothecium ashbyi, Ashbya gossypii, and Nematospora coryli, towards to Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 41: 31-42. https://doi.org/10.2323/jgam.41.31
  38. White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. pp.315-322. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, New York: Academic Press Inc.
  39. Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
  40. Tang X, Freitak D, Vogel H, Ping L, Shao Y, et al. 2012. Complexity and Variability of Gut Commensal Microbiota in Polyphagous Lepidopteran Larvae. PLoS One 7: e36978. https://doi.org/10.1371/journal.pone.0036978
  41. Appel HM, Martin MM. 1990. Gut redox conditions in herbivorous lepidopteran larvae. J. Chem. Ecol. 16: 3277-3290. https://doi.org/10.1007/BF00982098
  42. Harrison JF. 2001. Insect acid-base physiology. Annu. Rev. of Entomol. 46: 221-250. https://doi.org/10.1146/annurev.ento.46.1.221
  43. Jena J, Gupta AK. 2012. Ricinus communis 361 Linn: A phytopharmacological Review. Int. J. Pharm. Sci. 4: 25-29.
  44. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109: 8618-8622. https://doi.org/10.1073/pnas.1200231109
  45. Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M. 2013. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ. Microbiol. 15: 1956-1968. https://doi.org/10.1111/1462-2920.12001
  46. Kaltenpoth M, Winter SA, Kleinhammer A. 2009. Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol. Ecol. 69: 373-383. https://doi.org/10.1111/j.1574-6941.2009.00722.x
  47. Pandey N, Rajagopal R. 2017. Tissue damage induced midgut stem cell proliferation and microbial dysbiosis in Spodoptera litura. FEMS Microbiol. Ecol. 93(11). doi:10.1093/femsec/fix132. https://doi.org/10.1093/femsec/fix132
  48. Molnar O, Wuczkowski M, Prillinger H. 2008. Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol. Prog. 7: 111-123. https://doi.org/10.1007/s11557-008-0558-0
  49. Vega FE, Dowd PF. 2005. The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M, pp. 211-243. editors. Insect-Fungal Associations: ecology and evolution. Oxford University Press; New York: 2005.
  50. Starmer WT, Phaff HJ, Miranda M, Miller MW, Heed WB. 1982. The yeast flora associated with the decaying stems of columnar cactus and Drosophila in North America. Evol. Biol. 14: 269-295.
  51. Starmer WT, Barker JSF, Phaff HJ, Fogleman JC. 1986. Adaptations of Drosophila and yeasts: Their interactions with the volatile 2-propanol in the cactus microorganism- Drosophila model system. Aust. J. Biol. Sci. 39: 69-77. https://doi.org/10.1071/BI9860069
  52. Suh SO, Blackwell M. 2004. Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res. 5: 87-95. https://doi.org/10.1016/j.femsyr.2004.06.001
  53. Shao Y, Arias-Cordero E, Guo H, Bartram S, Boland W. 2014. In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS One 9: e85948. https://doi.org/10.1371/journal.pone.0085948
  54. Brinkmann N, Martens R, Tebbe CC. 2008. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74: 7189-7196. https://doi.org/10.1128/AEM.01464-08
  55. Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  56. Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC. 1995. Invasion by exotic forest pests: a threat to forest ecosystems. Forest Sci. Monogr. 30: 1-49.
  57. Jones RT, Sanchez LG, Fierer N. 2013. A cross-taxon analysis of insect-associated bacterial diversity. PLoS One 8: e61218. https://doi.org/10.1371/journal.pone.0061218