Characterization of Alpha-Amylase from Aspergillus niger Aggregate F Isolated from a Fermented Cassava Gatot Grown in Potato Peel Waste Medium

  • Angelia, Cindy (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Sanjaya, Astia (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Aida, Aida (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Tanudjaja, Ellen (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Victor, Hans (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Cahyani, Antari Daru (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Tan, Tjie Jan (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan) ;
  • Pinontoan, Reinhard (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
  • Received : 2018.11.30
  • Accepted : 2019.02.18
  • Published : 2019.09.28


The use of GRAS microorganisms isolated from fermented foods during amylase production using an economical food-waste medium provides more opportunities to produce amylase with a wider range of applications. Hence, this study aimed to isolate a good amylase-producing fungi from the traditional Indonesian fermented cassava, gatot, and to identify the amylase-producing capability of the isolate in a potato peel waste (PPW) medium. Black-colored fungi isolated from gatot was morphologically identified and the amylase produced was characterized using SDS-PAGE and Native PAGE. The isolate was then grown on PPW medium, and the amylase produced was further characterized. Morphological identification and enzyme characterization revealed that the Aspergillus niger aggregate F isolated from gatot secreted an active extracellular ${\alpha}$-amylase with an optimum pH of 5-6. In conclusion, Aspergillus niger aggregate F isolated from gatot can be used to produce ${\alpha}$-amylase using PPW as a medium.


Alpha-amylase;Aspergillus niger;fermented cassava gatot;potato peel waste


  1. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial ${\alpha}$-amylases: a biotechnological perspective. Process Biochem. 38: 1599-1616.
  2. Passamani FRF, Hernandes T, Lopes NA, Bastos SC, Santiago WD, Cardoso M das G, et al. 2014. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J. Food Prot. 77: 1947-1952.
  3. Fakir MSA, Jannat M, Mostafa MG, Seal H. 2012. Starch and flour extraction and nutrient composition of tuber in seven cassava accessions. J. Bangladesh Agric. Univ. 10: 217-222.
  4. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, et al. 2011. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6: 1-6.
  5. Mahmood S, Shahid MG, Nadeem M, Irfan M, Syed Q. 2016. Production and optimization of ${\alpha}$-amylase from Aspergillus niger using potato peel as substrate. Pak. J. Biotechnol. 13: 101-109.
  6. Sepelev I, Galoburda R. 2015. Industrial potato peel waste application in food production: a review. Res. Rural Dev. 1: 130-136.
  7. Kaur H, Arora M, Bhatia S, Alam MS. 2015. Optimization of ${\alpha}$-amylase and glucoamylase production in solid state fermentation of deoiled rice bran (DRB) by Rhizopus oryzae. Int. J. Pure Appl. Biosci. 3: 249-256.
  8. Mobini-Dehkordi M, Javan FA. 2012. Application of alpha-amylase in biotechnology. J. Biol. Todays World. 1: 15-20.
  9. DeSouza PM. 2010. Application of microbial ${\alpha}$-amylase in industry- A review. Braz. J. Microbiol. 41: 850-861.
  10. Rana N, Walia A, Gaur A. 2013. ${\alpha}$-amylases from microbial sources and its potential applications in various industries. Natl. Acad. Sci. Lett. 36: 9-17.
  11. Li C, Du M, Cheng B, Wang L, Liu X, Ma C, et al. 2014. Close relationship of a novel Flavobacteriaceae ${\alpha}$-amylase with archaeal ${\alpha}$-amylases and good potentials for industrial applications. Biotechnol. Biofuels. 7: 18-30.
  12. Ramasamy S, Benazir JF, Ramalingam S, Kumar R, Hari A, Raman N, et al. 2011. Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 3: 1756-1763.
  13. Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R. 2016. The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Ind. Biotechnol. 12: 295-302.
  14. Mukherjee R, Paul T, Soren JP, Halder SK, Mondal KC, Pati BR, et al. 2017. Acidophilic ${\alpha}$-amylase production from Aspergillus niger rbp7 using potato peel as substrate: A waste to value added approach. Waste Biomass 1: 1-13.
  15. Pereira CR, Resende JTV, Guerra EP, Lima VA, Martins MD, Knob A. 2017. Enzymatic conversion of sweet potato granular starch into fermentable sugars: Feasibility of sweet potato peel as alternative substrate for ${\alpha}$-amylase production. Biocatal. Agric. Biotechnol. 11: 231-238.
  16. Xu H, Sun L, Zhao D, Zhang B, Shi Y, Wu Y. 2008. Production of ${\alpha}$-amylase by Aspergillus oryzae As 3951 in solid state fermentation using spent brewing grains as substrate. J. Sci. Food Agric. 88: 529-535.
  17. Murthy PS, Naidu MM, Srinivas P. 2009. Production of ${\alpha}$-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 84: 1246-1249.
  18. Arapoglou D, Varzakas T, Vlyssides A, Israilides C. 2010. Ethanol production from potato peel waste (PPW). Waste Manag. 30: 1898-1902.
  19. Shukla J, Kar R. 2006. Potato peel as a solid state substrate for thermostable ${\alpha}$-amylase production by thermophilic Bacillus isolates. World J. Microbiol. Biotechnol. 22: 417-422.
  20. Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R. 2014. A second generation biofuel from cellulosic agricultural by-product fermentation using Clostridium species for electricity generation. Energy Procedia. 47: 310-315.
  21. Tamang JP, Watanabe K, Holzapfel WH. 2016. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7: 377.
  22. Sugiharto S, Yudiarti T, Isroli I. 2015. Functional properties of filamentous fungi isolated from the indonesian fermented dried cassava, with particular application on poultry. Mycobiology 43: 415-422.
  23. Wijedasa MH, Liyanapathirana LVC. 2012. Evaluation of an alternative slide culture technique for the morphological identification of fungal species. Sri Lankan J. Infect. Dis. 2: 47-52.
  24. Bisht D, Yadav SK, Darmwal NS. 2013. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization. Braz. J. Microbiol. 44: 1305-1314.
  25. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  26. Chidan Kumar CS, Chandraju S, Mythily R, Ahmad T, Made Gowda NM. 2012. Extraction of sugars from black gram peels by reversed-phase liquid chromatography systems and identification by TLC and mass analysis. Adv. Anal. Chem. Sci. Acad. Publ. 2: 32-36.
  27. Astriani A, Diniyah N, Jayus J, Nurhayati N. 2018. Phenotypic identification of indigenous fungi and lactic acid bacteria isolated from 'gatot' an Indonesian fermented food. Biodiversitas 19: 947-954.
  28. Gautam AK, Bhadauria R. 2012. Characterization of Aspergillus species associated with commercially stored triphala powder. Afr. J. Biotechnol. 11: 16814-16823.
  29. Samson RA, Pitt JI. 1986. Advances in Penicillium and Aspergillus Systematics. p. 60, Springer US, Boston, MA.
  30. McClenny N. 2005. Laboratory detection and identification of Aspergillus species by microscopic observation and culture: the traditional approach. Med. Mycol. 43: 125-128.
  31. Silva DM, Batista LR, Rezende EF, Fungaro MHP, Sartori D, Alves E. 2011. Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Braz. J. Microbiol. 42: 761-773.
  32. Sidkey N, Abo-Shadi M, Balahmar R, Sabry R, Badrany G. 2011. Purification and characterization of ${\alpha}$-amylase from a newly isolated Aspergillus flavus F 2 Mbb. Int. Res. J. Microbiol. 2: 96-103.
  33. Ciloci A, Bivol C, Stratan M, Reva V, Clapco S, Tiurin S, et al. 2012. Production and purification of ${\alpha}$-amylase from Aspergillus niger 33-19 CNMN FD 02a mutant form. Analele Univ. Din Oradea Fasc. Biol. 19: 74-79.
  34. Derakshan FK, Darvishi F, Dezfulian M, Madzak C. 2017. Expression and characterization of glucose oxidase from Aspergillus niger in Yarrowia lipolytica. Mol. Biotechnol. 59: 307-314.
  35. Renge VC, Khedkar SV, Nandukar NR. 2012. Enzyme synthesis by fermentation method: A review. Sci. Rev. Chem. Commun. 2: 585-590.
  36. Dhital S, Warren FJ, Butterworth PJ, Ellis PR, Gidley MJ. 2017. Mechanisms of starch digestion by ${\alpha}$-amylase-Structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 57: 875-892.
  37. Xu Q-S, Yan Y-S, Feng J-X. 2016. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol. Biofuels 9: 216-234.