DOI QR코드

DOI QR Code

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum

재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과

  • Yang, Hyungmo (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
  • 양형모 (가톨릭대학교 생명공학과) ;
  • 김필 (가톨릭대학교 생명공학과)
  • Received : 2018.07.02
  • Accepted : 2018.09.15
  • Published : 2019.09.28

Abstract

We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Keywords

Heme;$P_{180}$;$P_{gapA}$;$P_{H36}$;$P_{sod}$;$P_{dnaK}$

Acknowledgement

Supported by : NRF of Korea

References

  1. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. 2007. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109. https://doi.org/10.1016/j.jbiotec.2007.05.026
  2. Kim HJ, Kwon YD, Lee SY, Kim P. 2012. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl. Microbiol. Biotechnol. 94: 1079-1086. https://doi.org/10.1007/s00253-011-3779-0
  3. Schobert M, Jahn D. 2002. Regulation of heme biosynthesis in non-phototrophic bacteria. J. Mol. Microbiol. Biotechnol. 4: 287-294.
  4. Verkamp E, Chelm B. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J. Bacteriol. 171: 4728-4735. https://doi.org/10.1128/jb.171.9.4728-4735.1989
  5. McNicholas PM, Javor G, Darie S, Gunsalus RP. 1997. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM and hemA of Escherichia coli. FEMS Microbiol. Lett. 146: 143-148. https://doi.org/10.1111/j.1574-6968.1997.tb10184.x
  6. Wang L, Elliott M, Elliott T. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella Typhimurium. J. Bacteriol. 181: 1211-1219.
  7. Choi S-I, Park J, Kim P. 2017. Heme derived from Corynebacterium glutamicum: A potential iron additive for swine and an electron carrier additive for lactic acid bacterial culture. J. Microbiol. Biotechnol. 27: 500-506. https://doi.org/10.4014/jmb.1611.11010
  8. Lee MJ, Kim HJ, Lee JY, Kwon AS, Jun SY, Kang SH, et al. 2013. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 23: 668-673. https://doi.org/10.4014/jmb.1302.02022
  9. Na YA, Lee JY, Bang WJ, Lee HJ, Choi SI, Kwon SK, et al. 2015. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J. Ind. Microbiol. Biotechnol. 42: 915-924. https://doi.org/10.1007/s10295-015-1609-6
  10. Lee MJ, Kim P. 2018. Recombinant protein expression system in Corynebacterium glutamicum and its application. Front. Microbiol. 9: 2523. https://doi.org/10.3389/fmicb.2018.02523
  11. Park S-D, Lee S-N, Park I-H, Choi J-S, Jeong W-K, Kim Y-H, et al. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
  12. Lee J-Y, Lee HJ, Seo J, Kim E-S, Lee H-S, Kim P. 2014. Artificial oxidative stress-tolerant Corynebacterium glutamicum. AMB Express. 4: 15. https://doi.org/10.1186/s13568-014-0015-1
  13. Pranawidjaja S, Choi S-I, Lay BW, Kim P. 2015. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 25: 880-886. https://doi.org/10.4014/jmb.1411.11050
  14. Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969. https://doi.org/10.1002/bit.24954
  15. Toyoda K, Teramoto H, Inui M, Yukawa H. 2008. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81: 291-301. https://doi.org/10.1007/s00253-008-1682-0
  16. Zhang J, Kang Z, Chen J, Du G. 2015. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584. https://doi.org/10.1038/srep08584
  17. Sadrzadeh S, Graf E, Panter SS, Hallaway P, Eaton J. 1984. Hemoglobin. A biologic fenton reagent. J. Biol. Chem. 259: 14354-14356.
  18. Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117. https://doi.org/10.1111/1751-7915.12019
  19. Hassett DJ, Woodruff W, Wozniak D, Vasil M, Cohen M, Ohman D. 1993. Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese-and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate producing bacteria. J. Bacteriol. 175: 7658-7665. https://doi.org/10.1128/jb.175.23.7658-7665.1993
  20. Ehira S, Teramoto H, Inui M, Yukawa H. 2009. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J. Bacteriol. 191: 2964-2972. https://doi.org/10.1128/JB.00112-09
  21. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M. 2003. Efficient 40 C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl. Microbiol. Biotechnol. 62: 69-75. https://doi.org/10.1007/s00253-003-1254-2