DOI QR코드

DOI QR Code

ESSENTIAL NORMS OF SUMS OF TOEPLITZ PRODUCTS ON THE PLURIHARMONIC DIRICHLET SPACE

  • Lee, Young Joo (Department of Mathematics, Chonnam National University)
  • Received : 2019.02.10
  • Accepted : 2019.03.12
  • Published : 2019.09.25

Abstract

On the setting of the pluriharmonic Dirichlet space, we describe the essential norm of an operator which is a finite sum of products of several Toeplitz operators.

Keywords

Toeplitz operator;pluriharmonic Dirichlet space;Essential norm

References

  1. R. Adams, Sobolev Spaces, Academic press, New York, 1975.
  2. S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J., 47 (1998) 387-400.
  3. B. R. Choe, H. Koo and Y. J. Lee, Toeplitz products with pluriharmonic symbols on the Hardy space over the ball, J. of Mathematical Analysis and Application, 381 (2011) 365-382. https://doi.org/10.1016/j.jmaa.2011.03.023
  4. B. R. Choe, H. Koo and Y. J. Lee, Zero products of Toeplitz operators with n-harmonic symbols, Integral Equation and Operator Theory, 57 (2007) 43-66. https://doi.org/10.1007/s00020-006-1444-2
  5. M. Englis, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Equation and Operator Theory, 33 (1999) 426-455. https://doi.org/10.1007/BF01291836
  6. C. K. Fong, On the essential maximal numerical range, Acta Sci. Math., 41 (1979) 307-315.
  7. Y. J. Lee, Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space, Tohoku Math. J., 68 (2016) 253-271. https://doi.org/10.2748/tmj/1466172772
  8. Y. J. Lee, Fredholm Toeplitz operators on the pluriharmonic Dirichlet space, Honam Mathematical J., 39 (2017) 175-185.
  9. Y. J. Lee and K. Na, The essential norm of a sum of Toeplitz products on the Dirichlet space, J. of Mathematical Analysis and Application, 431 (2015) 1022-1034. https://doi.org/10.1016/j.jmaa.2015.06.028
  10. W. Rudin, Function Theory in the Unit Ball of ${\mathbb{C}}^n$, Springer-Verlag, New York, 1980.