• Received : 2019.01.28
  • Accepted : 2019.03.08
  • Published : 2019.09.25


We characterize two-point homogeneous spaces M by means of the structural operator $h={\frac{1}{2}}{\mathcal{L}}_{\xi}{\phi}$ or the characteristic Jacobi operator ${\ell}=R({\cdot},{\xi}){\xi}$ on the unit tangent sphere bundles $T_1M$.


unit tangent sphere bundle;two-point homogeneous space;contact metric structure


Supported by : chosun university


  1. J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diffential Geom. Appl. 2 (1992), 57-80.
  2. D. E. Blair, Critical associated metrics on contact manifolds III, J. Austral. Math. Soc. 50 (1991), 189-196.
  3. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  4. E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent sphere bundles, Publ. Math. Debrecen 70 (2007), 167-178.
  5. E. Boeckx, D.Perrone and L.Vanhecke, Unit tangent sphere bundles and two-point homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95.
  6. E. Boeckx and L.Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
  7. E. Cartan, Geometry of Riemannian spaces, Math. Sci. Press, Brooklyn, Mass., 1983.
  8. J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.
  9. J. T. Cho and S. H. Chun, The unit tangent sphere bundle of a complex space form, J. Korean Math. Soc. 41 (2004), 1035-1047.
  10. J. T. Cho and S. H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Math. J. 36(4) (2014), 805-812.
  11. J. T. Cho and S. H. Chun, Pseudo-symmetry on unit tangent sphere bundles, Honam Math. J. 38(2) (2016), 375-384.
  12. P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
  13. P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320.
  14. O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
  15. D. Perrone, Torsion tensor and critical metrics on contact (2n + 1)-manifolds, Monatsh. Math. 114 (1992), 245-259.
  16. D. Perrone, Tangent sphere bundles satisfying ${\nabla}_{\xi}{\tau}$ = 0, J. Geom. 49 (1994), 178-188.
  17. Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143.
  18. K. Yano and S. Ishihara, Tangent and cotangent bundles M. Dekker Inc., 1973.