DOI QR코드

DOI QR Code

STRONG COMPATIBILITY IN CERTAIN QUASIGROUP NONUNIFORM HOMOGENEOUS SPACES OF DEGREE 4

  • Im, Bokhee (Department of Mathematics, Chonnam National University) ;
  • Ryu, Ji-Young (Department of Mathematics, Chonnam National University)
  • Received : 2019.01.18
  • Accepted : 2019.04.23
  • Published : 2019.09.25

Abstract

We consider quasigroups $Q({\Gamma})$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs ${\Gamma}$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q({\Gamma})$ for any quasigroup nonuniform homogeneous space of degree 4. For such homogeneous spaces, we classify all the strong and weak compatibility graphs of $Q({\Gamma})$.

Keywords

quasigroup;quasigroup action;homogeneous space;intercalate;strongly compatible;compatibility graph;compatibility

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. P.J. Cameron and C.Y. Ku, Intersecting families of permutations, Eur. J. Comb., 24 (2003), 881-890. https://doi.org/10.1016/S0195-6698(03)00078-7
  2. K. Heinrich and W.D. Wallis, The maximum number of intercalates in a latin square, Combinatorial Mathematics VIII, K.L. McAvaney, Ed., Springer, Berlin, (1981), 221-233.
  3. B. Im, J.-Y. Ryu and J.D.H. Smith, Sharply transitive sets in quasigroup actions, J. Algebr. Comb. 33 (2011), 81-93. https://doi.org/10.1007/s10801-010-0234-8
  4. B. Im and J.-Y. Ryu, Compatibility in certain quasigroup homogeneous space, Bull.Korean Math. Soc 50 (2013), no. 2, 667-674. https://doi.org/10.4134/BKMS.2013.50.2.667
  5. H.-Y. Lee, B. Im and J.D.H. Smith, Stochastic tensors and approximate symmetry, Discrete Math. 34D (2017), 1335-1350.
  6. B.D. McKay and I.M. Wanless, Most Latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), 322-347.
  7. J.D.H. Smith, Permutation representations of loops, J. Alg. 264 (2003), 342-357. https://doi.org/10.1016/S0021-8693(03)00179-0
  8. J.D.H. Smith, Quasigroup permutation representations, Quasigroups and Related Systems 10 (2003), 115-134
  9. J.D.H. Smith, Symmetry and entropy: a hierarchical perspective, Symmetry 16 (2005), 37-45.
  10. J.D.H. Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007.