DOI QR코드

DOI QR Code

SPECTRUM CONVOLUTION OF FULL TRANSFORMATION SEMIGROUP

  • 투고 : 2018.11.24
  • 심사 : 2019.02.25
  • 발행 : 2019.09.25

초록

In this paper, some results are obtained from studying convolution on the spectrum of full transformation semigroup and some of its subsemigroups using Cayley's table. The shift of ${\alpha}$ determines its eigenvalues and one-dimensional linear convolution is complex in Symmetric group.

참고문헌

  1. J. M. Howie, P. M. Higgins and N. RuSkuc, On relative ranks of full transformation semigroup, Comm. Algebra, 26 (1998), 733 - 748. https://doi.org/10.1080/00927879808826160
  2. A. Laradji, A. and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum, 72 (2006), 51 - 62. https://doi.org/10.1007/s00233-005-0553-6
  3. Y. L. Michael and W. Liancheng, A criterion for stability of matrices, Journal of Mathematical Analysis and Applications , 225(1) (1998), 249 - 264. https://doi.org/10.1006/jmaa.1998.6020
  4. A. Umar, On the semigroups of order - decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect., A(120) (1992), 129-142. https://doi.org/10.1017/S0308210500015031
  5. A. Umar, Combinatorial results for orientation - preserving partial transformations, Journal of Integer Sequences, 2(2) (2011), 1-16.
  6. A. O. Adeniji Identity difference transformation semigroups, Ph. D. Thesis, University of Ilorin, Ilorin, (2013).
  7. O. Ganyushkin and V. Mazorchuk, Classical Finite transformation semigroups: An introduction, Springer, (2009).
  8. J. Green, On the structure of semigroups, Ann. Math., 54 (1951), 163 - 172. https://doi.org/10.2307/1969317
  9. J. M. Howie, The semigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41 (1966), 707 - 716.
  10. J. M. Howie, Some subsemigroups of infinite full transformation semigroup, Proc. Roy. Soc. Edinburgh, A81 (1981), 169 - 184.
  11. J. M. Howie and R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect., A 114 (1990), 161 - 167. https://doi.org/10.1017/S0308210500024355