DOI QR코드

DOI QR Code

Profile of Professionals of the Brazilian Production Sector of Timber Housing

  • DE ARAUJO, Victor (Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo) ;
  • POLANCO, Cesar (Faculty of Environment and Natural Resources, Francisco Jose de Caldas District University) ;
  • MORALES, Elen (Timber Industrial Engineering Graduation Course, Campus of Itapeva, Sao Paulo State University) ;
  • CORTEZ-BARBOSA, Juliana (Timber Industrial Engineering Graduation Course, Campus of Itapeva, Sao Paulo State University) ;
  • GAVA, Maristela (Timber Industrial Engineering Graduation Course, Campus of Itapeva, Sao Paulo State University) ;
  • GARCIA, Jose (Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo)
  • Received : 2019.06.10
  • Accepted : 2019.08.14
  • Published : 2019.09.25

Abstract

On account of the lack of education of Brazilian worker, this paper analyzed the characteristics of those professionals working in the production sector of timber houses. A sectoral survey was carried out with respective entrepreneurs to investigate the available professionals (career and contract types), evaluate the demands of skilled workers, and indicate solutions to improve the quality of labor qualification. Similarly, over 65% of sampled producers presented both direct-hired and outsourced workforce. For such contract ways, Civil Engineers and Architects were the main careers. Carpenters, Civil Engineers and Architects experienced on timber were the main sectoral demands. Timber Engineers have good potentials of service for this sector. The creation of courses on timber products can emerge as a key alternative to train people.

Keywords

civil construction;wooden house;sectoral research;personal interview

References

  1. Brege, S., Nord, T., Sjostrom, R., Stehn, L. 2010. Value-added strategies and forward integration in the Swedish sawmill industry: positioning and profitability in the high-volume segment. Scandinavian Journal of Forest Research 25(5): 482-493. https://doi.org/10.1080/02827581.2010.496738
  2. Buehlmann, U., Bumgardner, M., Alderman, D. 2017. Recent developments in US hardwood lumber markets and linkages to housing construction. Current Forestry Reports 3: 213-222. https://doi.org/10.1007/s40725-017-0059-y
  3. Campos, B.P.F., Binoti, D.H.B., Silva, M.L., Leite, H.G., Binoti, M.L.M. 2013. Conversao de arvores em multiprodutos da madeira utilizando programacao inteira. Revista Arvore 37(5): 881-887. https://doi.org/10.1590/S0100-67622013000500010
  4. Chang, Y.-S., Kim, S., Son, W.-L., Jung, S.-C., Shin, H.-K., Shim, K.-B. 2017. Evaluation of greenhouse gas emission for wooden house using simplified life cycle assessment tool. Journal of the Korean Wood Science and Technology 45(5): 650-660.
  5. Clement, C., Higuchi, N. 2006. A floresta amazonica e o futuro do Brasil. Ciencia&Cultura 58(3):44-49.
  6. Coelho, M.R.F., Coelho, M.H. 2013. Panorama da industria de celulose e papel no Brasil: 2001 a 2011. Floresta 43(3): 463-474. https://doi.org/10.5380/rf.v43i3.28280
  7. De Araujo, V., Nogueira, C., Savi, A., Sorrentino, M., Morales, E., Cortez-Barbosa, J., Gava, M., Garcia, J. 2018a. Economic and labor sizes from the Brazilian timber housing production sector. Acta Silvatica et Lignaria Hungarica 14(2): 95-106. https://doi.org/10.2478/aslh-2018-0006
  8. De Araujo, V.A., Cortez-Barbosa, J., Garcia, J.N., Gava, M., Laroca, C., Cesar, S.F. 2016. Woodframe: light framing houses for developing countries. Revista de la Construccion 15(2): 78-87. https://doi.org/10.4067/S0718-915X2016000200008
  9. De Araujo, V.A., Garcia, J.N., Cortez-Barbosa, J., Gava, M., Savi, A.F., Morales, E.A.M., Lahr, F.A.R., Vasconcelos, J.S., Christoforo, A.L. 2017. Importancia da madeira de florestas plantadas para a industria de manufaturados. Pesquisa Florestal Brasileira 37(90): 157-168.
  10. De Araujo, V.A., Lima Jr., M.P., Biazzon, J.C., Vasconcelos, J.S., Munis, R.A., Morales, E.A.M., Cortez-Barbosa, J., Nogueira, C.L., Savi, A.F., Severo, E.T.D., Christoforo, A.L., Sorrentino, M., Lahr, F.A.R., Gava, M., Garcia, J.N. 2018b. Machinery from Brazilian wooden housing production: size and overall obsolescence. BioResources 13(4): 8775-8786.
  11. De Araujo, V.A., Vasconcelos, J.S., Morales, E.A.M., Savi, A.F., Hindman, D.P., O'Brien, M.J., Negrao, J.H.J.O., Christoforo, A.L., Lahr, F.A.R., Garcia, J.N. 2018c. Difficulties of wooden housing production sector in Brazil. Wood Material Science & Engineering (2018): 1-10.
  12. Fiorentin, L.D., Arce, J.E., Pelissari, A.L., David, H.C., Silva, P.H.B.M., Stang, M.B., Figueiredo Filho, A. 2017. Strategies for regulating timber volume in forest stands. Scientia Forestalis 45(116): 717-728.
  13. Franca, M.C., Cunha, A.B., Trianoski, R., Schimalski, M.B., Rios, P.D. 2016. Producao de paineis aglomerados homogeneos a partir de fibras oversize residuais de uma industria de MDF. Scientia Forestalis 44(111): 665-674.
  14. Frigo, J.P., Silveira, D.S. 2012. Educacao ambiental e construcao civil: praticas de gestao de residuos em Foz do Iguacu-PR. Revista Monografias Ambientais 9(9): 1938-1952.
  15. Iba. 2016. Iba 2016: relatorio anual. Sao Paulo: Iba, pp. 96.
  16. Kim, S., Chang, Y.-S., Park, J.-S., Shim, K.-B. 2017. Evaluation of greenhouse gas emission for wooden house using simplified life cycle assessment tool. Journal of the Korean Wood Science and Technology 45(6): 828-835.
  17. Kozak, R.A., Cohen, D.H. 1999. Architects and structural engineers: an examination of timber design and use in non-residential construction. Wood and Fiber Science 49: 37-46.
  18. Kuzman, M.K., Sandberg, D. 2017. Comparison of timber-house technologies and initiatives supporting use of timber in Slovenia and in Sweden - the state of the art. iForests 10: 930-938. https://doi.org/10.3832/ifor2397-010
  19. Longue Junior, D., Colodette, J.L. 2013. Importancia e versatilidade da madeira de eucalipto para a industria de base florestal. Pesquisa Florestal Brasileira 33(76): 429-438. https://doi.org/10.4336/2013.pfb.33.76.528
  20. MEC. 2019. e-MEC. Retrieved from emec.mec.gov.br/emec/consulta-cadastro/detalhamento/d96957f455f6405d14c6542552b0f6eb/MQ==/9f1aa921d96ca1df24a34474cc171f61/MjY=, accessed in 1/5/2019.
  21. O'Connor, J., Kozak, R., Gaston, C., Fell, D. 2004. Timber use in nonresidential buildings: opportunities and barriers. Forest Products Journal 54(3): 19-28.
  22. Pang, S.-J., Lee, B., Jeong, G.Y. 2017. Insulation saving effect for Korean apartment house using cross-laminated timber (CLT). Journal of the Korean Wood Science and Technology 45(6): 846-856.
  23. Pereira Filho, H.M., Lucena Filho, H.L. 2016. Terceirizacao trabalhista e a construcao civil. Revista do Direito do Trabalho e Meio Ambiente do Trabalho 2(2): 209-226.
  24. Pinheiro, R.M., Castro, G.C., Silva, H.H., Nunes, J.M. 2011. Pesquisa de mercado. Rio de Janeiro: FGV.
  25. Raosoft. Raosoft sample size calculator. 2004. Retrieved from http://www.raosoft.com/samplesize.html, accessed in 1/5/2019.
  26. Roos, A., Woxblom, L., McCluskey, D. 2010. The influence of architects and structural engineers on timber in construction - perceptions and roles. Silva Fennica 44(5): 871-884.
  27. Seo, J., Jeong, S.-G., Kim, S. 2017. Thermal bridge and heat transfer analysis for each part in residential building according to construction of wood-based finishing material. Journal of the Korean Wood Science and Technology 45(3): 343-359.
  28. Weska, A.R., Silva, A.S., Iliescu, D., Nascimento, H.M., Martins, J.L., Cerqueira, L., Neder, M.L.C., Silva, T.N., Rodrigues, Y.P. 2012. Analise sobre a expansao das universidades federais: 2003 a 2012. Brasilia: MEC, pp. 55.
  29. Qu, M., Pelkonen, P., Tahvanainen, L., Arevalo, J., Gritten, D. 2012. Experts' assessment of the development of wood framed houses in China. Journal of Cleaner Production 31: 100-105. https://doi.org/10.1016/j.jclepro.2012.03.002