Effect of Ammonium Persulfate Concentration on Characteristics of Cellulose Nanocrystals from Oil Palm Frond

  • ZAINI, Lukmanul Hakim (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University, IPB Dramaga Campus) ;
  • FEBRIANTO, Fauzi (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University, IPB Dramaga Campus) ;
  • WISTARA, I Nyoman Jaya (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University, IPB Dramaga Campus) ;
  • N, Marwanto (Forest Products Science and Technology, Department of Forest Products, IPB Graduate School, IPB Dramaga Campus) ;
  • MAULANA, Muhammad Iqbal (Forest Products Science and Technology, Department of Forest Products, IPB Graduate School, IPB Dramaga Campus) ;
  • LEE, Seung Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University) ;
  • KIM, Nam Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University)
  • 투고 : 2019.05.27
  • 심사 : 2019.08.13
  • 발행 : 2019.09.25


Cellulose nanocrystals (CNCs) were successfully isolated from oil palm fronds (OPFs) using different concentrations of ammonium persulfate (APS), and their characteristics were analyzed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA). APS oxidation effectively isolated CNCs with rod-like morphology in nanometer scale. The dimensions of the CNCs decreased with increasing APS concentration. FTIR and XRD analyses revealed that all the CNCs showed crystals in the form of cellulose I without crystal transformation occurring during APS treatment. The relative crystallinity of the CNCs increased with increasing APS concentration, whereas their thermal stability decreased. An APS concentration of 2 M was found to be optimal for isolating the CNCs.


cellulose nanocrystals;oil palm fronds;ammonium persulfate oxidation


연구 과제 주관 기관 : Ministry of Research, Technology, and Higher Education, National Research Foundation of Korea (NRF)


  1. Abnisa, F., Arami-Niya, A., Daud, W.W., Sahu, J., Noor, I. 2013. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manage 76: 1073-1082.
  2. Adel, A.M., Abd El-Wahab, Z.H., Ibrahim, A.A., Al-Shemy, M.T. 2011. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers 83(2): 676-687.
  3. Biagiotti, J., Puglia, D., Torre, L., Kenny, J.M., Arbelaiz, A., Cantero, G., Marieta, C., Llano-Ponte, R., Mondragon, I. 2004. A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites 25(5): 470-479.
  4. Bondeson, D., Mathew, A., Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2): 171-180.
  5. Castro-Guerrero, C.F., Gray, D.G. 2014. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21(4): 2567-2577.
  6. Chanjula, P., Petcharat, V., Cherdthong, A. 2017. Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats. Asian-Australasian journal of animal sciences 30(6): 811-818.
  7. Dungani, R., Owolabi, A.F., Saurabh, C.K., Khalil, H.A., Tahir, P.M., Hazwan, C.I.C.M., Aditiawati, P. 2017. Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. Journal of Polymers and the Environment 25(3): 692-700.
  8. Fung, W.Y., Yuen, K.H., Liong, M.T. 2010. Characterization of fibrous residues from agrowastes and the production of nanofibers. Journal of agricultural and food chemistry 58(13): 8077-8084.
  9. Fung, W.Y., Yuen, K.H., Liong, M.T. 2011. Agrowaste-based nanofibers as a probiotic encapsulant: fabrication and characterization. Journal of agricultural and food chemistry 59(15): 8140-8147.
  10. Ghani, A.A.A., Rusli, N.D., Shahudin, M.S., Goh, Y.M., Zamri-Saad, M., Hafandi, A., Hassim, H.A. 2017. Utilisation of Oil Palm Fronds as Ruminant Feed and Its Effect on Fatty Acid Metabolism. Pertanika Journal of Tropical Agricultural Science 40(2): 215-224.
  11. Goh, K.Y., Ching, Y.C., Chuah, C.H., Abdullah, L.C., Liou, N.S. 2016. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: Comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23(1): 379-390.
  12. Gwon, J.G., Lee, D.B., Cho, H.J., Lee, S.Y. 2018. Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs). Journal of the Korean Wood Science and Technology 46(5): 565-576.
  13. Hartono, R., Hidayat, W., Wahyudi, I., Febrianto, F., Dwianto, W., Jang, J.H., Kim, N.H. 2016a. Effect of Phenol Formaldehyde Impregnation on The Physical and Mechanical Properties of Soft-Inner Part of Oil Palm Trunk. Journal of the Korean Wood Science and Technology 44(6): 842-851.
  14. Hartono, R., Wahyudi, I., Febrianto, F., Dwianto, W., Hidayat, W., Jang, J.H., Kim, N.H. 2016b. Quality Improvement of Oil Palm Trunk Properties by Close System Compression Method. Journal of the Korean Wood Science and Technology 44(2): 172-183.
  15. Jiang, H., Wu, Y., Han, B., Zhang, Y. 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydrate polymers 174: 291-298.
  16. Jo, J., Jung, J., Byun, J., Lim, B., Yang, J. 2016. Preparation of cellulose acetate produced from lignocellulosic biomass. Journal of the Korean Wood Science and Technology 44(2): 241-252.
  17. Jonoobi, M., Harun, J., Tahir, P.M., Zaini, L.H., SaifulAzry, S., Makinejad, M.D. 2010. Characteristic of nanofibers extracted from kenaf core. BioResources 5(4): 2556-2566.
  18. Khalid, I., Sulaiman, O., Hashim, R., Razak, W., Jumhuri, N., Rasat, M.S.M. 2015. Evaluation on layering effects and adhesive rates of laminated compressed composite panels made from oil palm (Elaeis guineensis) fronds. Materials & Design 68: 24-28.
  19. Leung, A.C., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3): 302-305.
  20. Liu, W., Mohanty, A.K., Drzal, L.T., Askel, P., Misra, M. 2004. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. Journal of Materials Science 39(3): 1051-1054.
  21. Loh, S.K. 2017. The potential of the Malaysian oil palm biomass as renewable energy source. Energy conversion and management 141: 285-298.
  22. Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate polymers 82(2): 329-336.
  23. Luthfi, A.A.I., Jahim, J.M., Harun, S., Tan, J.P., Mohammad, A.W. 2016. Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochemistry 51(10): 1527-1537.
  24. Mathius, I.W., Sitompul, D., Manurung, B.P., Azmi. 2004. By-products of plant and processing of palm oil as a feed for beef cattle: A review. In Pros. National Workshop on Palm Oil-Cattle Integration System. Agricultural Research Agency of the Government of Bengkulu Province and PT. Agricinal. 120-128.
  25. Mohanty, A.K., Misra, M., Hinrichsen, G. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276(1): 1-24.
  26. Nordin, N.A., Sulaiman, O., Hashim, R., Kassim, M.H.M. 2017. Oil Palm Frond Waste for the Production of Cellulose Nanocrystals. Journal of Physical Science 28(2): 115-126.
  27. Oun, A.A., and Rhim, J.W. 2015. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate polymers 127: 101-109.
  28. Oun, A.A., and Rhim, J.W. 2017. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydrate polymers 174: 484-492.
  29. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for biofuels 3(10): 1-10.
  30. Park, C.W., Han, S.Y., Lee, S.H. 2016. Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology. Journal of the Korean Wood Science and Technology 44(3): 398-405.
  31. Ruland, W. 1961. X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 1961 14:1180-1185.
  32. Saurabh, C.K., Dungani, R., Owolabi, A.F., Atiqah, N.S., Zaidon, A., Aprilia, N.S., Khalil, H.A. 2016. Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineesis) fronds: morphology, chemical, crystallinity, and thermal characteristics. BioResources 11(3): 6742-6755.
  33. Shah, A.M., Rahim, A.A., Ibrahim, M.N.M., Hussin, M.H. 2017. Depolymerized Oil Palm Frond (OPF) Lignin Products as Corrosion Inhibitors for Mild Steel in 1 M HCl. International Journal of Electrochemical Science 12(10): 9017-9039.
  34. Sukiran, M.A., Abnisa, F., Daud, W.M. A.W., Bakar, N.A., Loh, S.K. 2017. A review of torrefaction of oil palm solid wastes for biofuel production. Energy conversion and management 149: 101-120.
  35. Sun, X.F., Xu, F., Sun, R.C., Fowler, P. and Baird, M.S. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340(1): 97-106.
  36. Tahir, P.M., Zaini, L.H., Jonoobi, M., Khalil, H.A. 2015. Preparation of Nanocellulose from Kenaf (Hibiscus cannabinus L.) via Chemical and Chemomechanical Processes. In: Handbook of Polymer Nanocomposites: Processing, Performance and Application. Ed. by Pandey, J. K., Takagi, H., Antonio, Nakagaito, N., Kim, H., Springer-Verlag Berlin Heidelberg, Germany.
  37. Tan, J.P., Jahim, J.M., Harun, S., Wu, T.Y., Mumtaz, T. 2016. Utilization of oil palm fronds as a sustainable carbon source in biorefineries. International Journal of Hydrogen Energy 41(8): 4896-4906.
  38. Troedec, M.L., Sedan, D., Peyratout, C., Bonnet, J.P., Smith, A.S., Guinebretiere, R., Gloaguen, V., Krausz, P. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing 39(3): 514-522.
  39. Wardani, L., Massijaya, M.Y., Hadi, Y.S., Darmawan, I.W. (2014). The Effect of Zephyr Layer Orientation on Zephyrboard Made from Oil Palm Petiole. Makara Journal of Technology 18(1): 36-40.
  40. Wistara, N.J., Rohmatullah, M.A., Febrianto, F., Pari, G., Lee, S., Kim, N. 2017. Effect of bark content and densification temperature on the properties of oil palm trunk-based pellets. Journal of the Korean Wood Science and Technology 45(6): 671-681.
  41. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-1788.
  42. Zaini, L. H., Jonoobi, M., Tahir, P. M., Karimi, S. 2013. Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus cannabinus L.) Bast Fibers. Journal of Biomaterials and Nanobiotechnology 4(1): 37-44.
  43. Zaini, L.H., Paridah, M.T., Jawaid, M., Othman, A. Y., Juliana, A.H. 2014. Effect of Kenaf Cellulose Whiskers on Cellulose Acetate Butyrate Nanocomposites Properties. In: Nanocellulose Polymer Nanocomposites: Fundamentals and Applications. Ed. by Thakur, V.K., Scrivener Publishing LLC, Beverly, USA.
  44. Zainol, M.M., Amin, N.A.S., Asmadi, M. 2017. Preparation and Characterization of Impregnated Magnetic Particles on Oil Palm Frond Activated Carbon for Metal Ions Removal. Sains Malaysiana 46(5): 773-782.